Читаем Теория расчета нефтяных центробежных насосов полностью

Вводится понятие линии тока [5]. Через любую произвольно взятую точку внутри потока в произвольный момент времени проходит только одна линия тока.

Движение делится на установившиеся, при котором вектор скорости в каждой точке не изменяется.

Уравнения неразрывности можно получить строго по теории Эйлера. В этом случае вводится понятие элементарной струйки. Элементарная струйка получается введением малого контура окружности и проведением через весь периметр этой окружности линий тока. В результате получится прямой или кривой цилиндр.

В элементарной струйке (трубке тока) для произведение скорости на площадь сечения (то есть взятую ранее окружность) является константой. Объем струи принимается равным единицы (единичная струйка).

Важным является то свойство, что через проточную часть насоса на основании теории проходит одинаковое количество струй, то есть по-другому их число на входе и выходе равно.

Недостатком применения теории струй является то, что не описывается состояние вокруг произвольно выбранной точки пространства.

Для такого описания в гидродинамике уже не используют элементарные струйки, а вокруг точки выделяют элементарный объем, как будет показано ниже.

Отметим различие в предметах наук гидродинамики и гидравлики. Гидродинамика входит в качестве раздела в механику сплошной среды. Уравнения гидростатики выводятся из уравнений гидродинамики. Гидравлика касается вопросов течения жидкой среды по трубам, как следует из расшифровки названия. Такое течение является практическим примером применения гидродинамики к течению по трубам. Гидродинамика является более общей наукой и не входит в состав гидравлики, как указывается в ряде книг по гидравлике (ссылки не приводим).

<p>2.2 Поверхности тока на лопастях колеса (импеллера) насоса</p>

Малюшенко в работе [2,с.46] отмечает, что при профилировании меридионального сечения рабочего колеса (импеллера) насоса необходимо закладывать в геометрию равные площади проходных сечений по длине лопасти.

Поток жидкости, поступающий на рабочее колесо насоса, разбивается на элементарные струйки круглого сечения. Соседние струйки сопряжены по линии касания. Такое течение жидкости по лопатке является плоским током. Лопасти колеса при вращении деформируют плоский ток. Такое допущение обеспечивает равную скорость струек потока в меридиональном сечении [2,с.52].

Число линий тока зависит от точности расчета и ширина лопасти насоса. В меридиональном сечении рабочего колеса (импеллера) стенки наружную и внутреннюю поверхности линий тока. Между этими линиями строятся промежуточные линии тока. Проекции поверхностей линий тока в меридиональной плоскости проецируются в линии тока вдоль лопасти.

<p>2.3 Определение напора колеса (импеллера) по формуле Эйлера</p>

Схема для определения напора по теории Эйлера приведена в [1,с.39], [3,с.14].

Согласно этим схема, вращением колеса образуются две силы: нормальная к лопасти, создающая давление на жидкость, и окружная сила. Равнодействующая нормальной и окружной сил направлена из силового многоугольника направлена в точке: по касательной к лопасти в этой точке в радиальном направлении, то есть вверх. На выходе с лопасти равнодействующая направлена вверх по оси патрубка нагнетания. Таким образом происходит изменение направления движения потока в проточной части с горизонтального из всасывающего патрубка на вертикальное в патрубке нагнетания. Движущая сила процесса, заставляющая перемещаться поток вдоль лопасти, показана на схеме ниже.

Лопасть колеса вращением поднимает вверх часть потока, создавая понижение давления, то есть убирая из занимаемого пространства объем жидкости. Со стороны патрубка всасывания находится жидкость с давлением без понижения, то есть с большим давлением. Разница давлений вызывает горизонтальную силу, за счет которой новые части потока поступают на лопасти. Горизонтальная сила не вызвана вращением колеса напрямую, а является следствием разницы давлений и поэтому является вторичной по отношению к нормальной и осевой силам (в силовой многоугольник не должна входит).

Схема движения потока вдоль лопасти рабочего колеса (импеллера) насоса (вместо скоростей u и c приведены силы):

Рис. 1 – Схема сил, вызывающих движение потока по лопасти

Напор, создаваемый рабочим колесом (импеллером) определяется по известному уравнению Эйлера [1,с.38] (здесь не приводим известную буквенную расшифровку):

Формула Эйлера выводится записью выражений для моментов, действующих на начало и конец лопасти и последующим приравниванием этих выражений и выполнением математических преобразований [1,с.38].

<p>3 Уравнение Эйлера и выбор насоса</p>

Исходными данными для выбора насоса являются [6,с.203]:

– напор во всасывающей и нагнетательной линиях трубопровода,

– расход и температура перекачиваемого потока,

– вязкость и плотности жидкости.

Перейти на страницу:

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука