Такие приложения ознаменовали разработку специальных СУБД, которые называются географическими информационными системами (ГИС). Они содержат поля, специально предназначенные для географических данных: PointField (точка), LineField (прямая), PolygonField (многоугольник) и т. д. И они способны выполнять пространственные запросы в этих полях. По ГИС рек и городов вы можете непосредственно делать запросы такого рода:
Рис. 6.12. Медианный возраст в США[66]
Эти системы даже позволяют определять пространственные ограничения. Например, в таблице, хранящей информацию по земельным участкам, можно установить ограничение, что никакие два участка не должны перекрываться. Это оградит агентства по земельному кадастру от колоссального количества проблем.
Многие общецелевые СУБД предоставляют ГИС-расширения. Всегда, когда вам приходится иметь дело с географическими данными, убедитесь, что вы используете ядро базы данных с поддержкой ГИС, и применяйте ее функционал для создания более умных запросов. ГИС-приложения часто используются в ежедневной жизни, например, в GPS-навигаторах вроде Google Maps или Waze.
6.5. Форматы сериализации
Как хранить данные за пределами БД в формате, совместимом с разными системами? Например, мы можем захотеть продублировать данные либо экспортировать их в другую систему. С этой целью данные должны пройти процесс
SQL — наиболее распространенный формат сериализации реляционных баз данных. Мы пишем серию команд SQL, которые воспроизводят базу данных и все ее детали. Большинство реляционных систем баз данных содержат команду DUMP для создания SQL-сериализированного дампа базы данных. Они также содержат команду RESTORE для загрузки такого файла дампа назад в СУБД.
XML — это еще один способ представить структурированные данные, но он не зависит от реляционной модели или реализации СУБД. Формат XML создавался для совместимости с разнообразными вычислительными системами и описания структуры и сложности данных. Некоторые говорят, что XML был разработан учеными, не понимавшими, что их творение не очень практично.
JSON — это формат сериализации, к которому все больше сходятся разработчики во всем мире. Он может представлять реляционные и нереляционные данные интуитивно понятным для программистов образом. Существует много расширений JSON: BSON (двоичный JSON) дает максимальную эффективность обработки данных; JSON-LD привносит в JSON мощь XML-структуры.
CSV, или файл с разделением значений запятыми, — это, возможно, самый простой формат обмена данными. Данные здесь хранятся в виде текста, по одной записи на строку. Поля в записи разделяются запятой или каким-либо другим символом, не встречающимся в данных. Формат CSV полезен для создания дампов простых БД, но он не годится для представления сложных данных.
Подведем итоги
В этой главе мы узнали, что структурирование информации в базе данных имеет чрезвычайно важное значение для того, чтобы сделать данные полезными. Мы изучили различные способы того, как это делается. Мы увидели, как реляционная модель разделяет данные на таблицы и как они связываются вместе при помощи отношений.
Большинство программистов учатся работать только с реляционной моделью, но мы вышли за эти рамки. Мы увидели альтернативные, нереляционные способы структурирования данных. Мы обсудили проблемы непротиворечивости данных и как их смягчить при помощи транзакций. Мы рассмотрели способы масштабирования СУБД для обработки интенсивных нагрузок при помощи распределенной базы данных. Мы также узнали о ГИС и о функционале, который они предлагают для работы с географическими данными. А еще мы узнали распространенные способы обмена данными между различными приложениями.
И, наконец (если только вы не экспериментируете), остановите свой выбор на широко используемой СУБД. Она производительнее и содержит меньше ошибок. Идеальной системы управления базами данных не существует. Ни одна СУБД не подходит для любых, без исключения, сценариев. Прочитав эту главу, вы теперь лучше разбираетесь в различных типах СУБД и их особенностях, и потому сможете сделать обоснованный выбор, какую из них использовать.
Полезные материалы
• Концепции систем баз данных (Database System Concepts, Silberschatz, см. https://code.energy/silber).
•