Читаем Теоретический минимум по Computer Science полностью

Это самый гибкий тип баз данных. Избавившись от таблиц и коллекций, вы можете хранить сетевые данные интуитивно понятным способом. Если бы вы решили нарисовать станции метро и остановки наземного общественного транспорта на доске, вы не стали бы изображать их в табличной форме. Вы бы использовали круги, прямоугольники и стрелки. Графовые БД позволяют хранить информацию именно таким образом.

Если ваши данные похожи на сеть, подумайте об использовании графовой базы данных. Этот тип БД особенно полезен, когда между компонентами данных много важных связей. Графовые базы данных также позволяют выполнять различные типы граф-ориентированных запросов. Например, если вы храните данные об общественном транспорте в графе, можете прямо запросить лучший маршрут между двумя остановками в одну сторону или туда и обратно.

<p>Большие данные</p>

Популярный в последнее время термин «большие данные» (big data) описывает ситуации обработки данных, которые чрезвычайно сложны с точки зрения объема, скорости или разнообразия[62]. «Объем» больших данных — это, например, обработка тысяч терабайт информации в случае с БАК[63]. «Скорость» применительно к большим данным означает, что вы должны сохранять миллион записей в секунду без задержек или быстро выполнять миллиарды запросов на чтение. «Разнообразие» означает, что данные не имеют строгой структуры, и потому становится очень трудно с ними справляться, используя традиционные реляционные базы данных.

Каждый раз, когда вам требуется искать нестандартный подход к управлению данными по причине их объема, скорости или разнообразия, вы можете смело сказать, что имеете дело с большими данными. Для выполнения некоторых современных научных экспериментов (к примеру, связанных с БАК или SKA[64]) специалисты уже проводят исследования в области мегаданных, предполагающей хранение и анализ миллионов терабайт информации.

Большие данные часто связаны с нереляционными базами данных из-за их повышенной гибкости. Многие типы приложений, работающих с большими данными, практически невозможно реализовать при помощи реляционных баз данных.

<p>SQL против NoSQL</p>

Реляционные БД ориентированы на данные: они максимизируют структурирование данных и устраняют их дублирование независимо от того, в каком виде те требуются. Нереляционные БД, напротив, ориентированы на применение: они облегчают доступ к данным и их использование в соответствии с вашими потребностями.

Мы видели, что базы данных NoSQL позволяют быстро и эффективно сохранять крупные, изменчивые и неструктурированные данные. Не беспокоясь о фиксированных схемах и миграциях схемы, вы можете разрабатывать свои решения гораздо быстрее. Нереляционные базы данных для многих программистов естественней и проще.

Однако нужно помнить: какой бы крутой ни была ваша нереляционная база данных, ответственность за обновление дублированной информации по всем документам и коллекциям лежит только на вас. Только вы должны принимать меры для поддержания информации в непротиворечивом состоянии. Запомните: большая мощь этих БД идет рука об руку с большой ответственностью.

<p>6.3. Распределенная модель</p>

Существует несколько ситуаций, в которых для поддержания базы данных должен работать не один компьютер, а несколько, действующих координированно.

• Базы данных объемом в нескольких сотен терабайт. Найти одиночный компьютер с таким большим пространством хранения нереально.

• СУБД, обрабатывающие несколько тысяч одновременных запросов в секунду[65]. Никакой одиночный компьютер не имеет достаточных возможностей по передаче данных по сети или по их обработке, чтобы справиться с такой нагрузкой.

• Жизненно важные базы данных, как, например, те, что регистрируют высоту и скорость самолета, находящегося в конкретном воздушном пространстве. Полагаться на одиночный компьютер в этом случае слишком рискованно — если он выйдет из строя, база данных станет недоступной.

Для таких ситуаций существуют СУБД, способные работать на нескольких скоординированных компьютерах, образующие распределенные базы данных. Давайте рассмотрим наиболее распространенные способы организации таких БД.

<p>Репликация с одним ведущим</p>

Один компьютер является ведущим и получает все запросы к базе данных. Он подключен к нескольким другим, ведомым компьютерам. Каждый из них содержит реплику, или копию, базы данных. Когда ведущий компьютер получает запросы на запись, он направляет их ведомым, обеспечивая их синхронизацию (рис. 6.8).

Рис. 6.8. Распределенная база данных с одним ведущим компьютером

При такой организации ведущий компьютер способен обслужить больше запросов на чтение, потому что может делегировать их ведомым компьютерам. Система становится надежнее: если основной компьютер выключается, ведомые машины автоматически координируются и выбирают новый ведущий компьютер. Благодаря этому система не прекращает свою работу.

Перейти на страницу:

Все книги серии Библиотека программиста

Программист-фанатик
Программист-фанатик

В этой книге вы не найдете описания конкретных технологий, алгоритмов и языков программирования — ценность ее не в этом. Она представляет собой сборник практических советов и рекомендаций, касающихся ситуаций, с которыми порой сталкивается любой разработчик: отсутствие мотивации, выбор приоритетов, психология программирования, отношения с руководством и коллегами и многие другие. Подобные знания обычно приходят лишь в результате многолетнего опыта реальной работы. По большому счету перед вами — ярко и увлекательно написанное руководство, которое поможет быстро сделать карьеру в индустрии разработки ПО любому, кто поставил себе такую цель. Конечно, опытные программисты могут найти некоторые идеи автора достаточно очевидными, но и для таких найдутся темы, которые позволят пересмотреть устоявшиеся взгляды и выйти на новый уровень мастерства. Для тех же, кто только в самом начале своего пути как разработчика, чтение данной книги, несомненно, откроет широчайшие перспективы. Издательство выражает благодарность Шувалову А. В. и Курышеву А. И. за помощь в работе над книгой.

Чед Фаулер

Программирование, программы, базы данных / Программирование / Книги по IT

Похожие книги