Это самый гибкий тип баз данных. Избавившись от таблиц и коллекций, вы можете хранить сетевые данные интуитивно понятным способом. Если бы вы решили нарисовать станции метро и остановки наземного общественного транспорта на доске, вы не стали бы изображать их в табличной форме. Вы бы использовали круги, прямоугольники и стрелки. Графовые БД позволяют хранить информацию именно таким образом.
Если ваши данные похожи на сеть, подумайте об использовании графовой базы данных. Этот тип БД особенно полезен, когда между компонентами данных много важных связей. Графовые базы данных также позволяют выполнять различные типы граф-ориентированных запросов. Например, если вы храните данные об общественном транспорте в графе, можете прямо запросить лучший маршрут между двумя остановками в одну сторону или туда и обратно.
Большие данные
Популярный в последнее время термин
Каждый раз, когда вам требуется искать нестандартный подход к управлению данными по причине их объема, скорости или разнообразия, вы можете смело сказать, что имеете дело с большими данными. Для выполнения некоторых современных научных экспериментов (к примеру, связанных с БАК или SKA[64]) специалисты уже проводят исследования в области
Большие данные часто связаны с нереляционными базами данных из-за их повышенной гибкости. Многие типы приложений, работающих с большими данными, практически невозможно реализовать при помощи реляционных баз данных.
SQL против NoSQL
Реляционные БД ориентированы на данные: они максимизируют структурирование данных и устраняют их дублирование независимо от того, в каком виде те требуются. Нереляционные БД, напротив, ориентированы на применение: они облегчают доступ к данным и их использование в соответствии с вашими потребностями.
Мы видели, что базы данных NoSQL позволяют быстро и эффективно сохранять крупные, изменчивые и неструктурированные данные. Не беспокоясь о фиксированных схемах и миграциях схемы, вы можете разрабатывать свои решения гораздо быстрее. Нереляционные базы данных для многих программистов естественней и проще.
Однако нужно помнить: какой бы крутой ни была ваша нереляционная база данных, ответственность за обновление дублированной информации по всем документам и коллекциям лежит
6.3. Распределенная модель
Существует несколько ситуаций, в которых для поддержания базы данных должен работать не один компьютер, а несколько, действующих координированно.
• Базы данных объемом в нескольких сотен терабайт. Найти одиночный компьютер с таким большим пространством хранения нереально.
• СУБД, обрабатывающие несколько тысяч одновременных запросов в секунду[65]. Никакой одиночный компьютер не имеет достаточных возможностей по передаче данных по сети или по их обработке, чтобы справиться с такой нагрузкой.
• Жизненно важные базы данных, как, например, те, что регистрируют высоту и скорость самолета, находящегося в конкретном воздушном пространстве. Полагаться на одиночный компьютер в этом случае слишком рискованно — если он выйдет из строя, база данных станет недоступной.
Для таких ситуаций существуют СУБД, способные работать на нескольких скоординированных компьютерах, образующие
Репликация с одним ведущим
Один компьютер является
Рис. 6.8. Распределенная база данных с одним ведущим компьютером
При такой организации ведущий компьютер способен обслужить больше запросов на чтение, потому что может делегировать их ведомым компьютерам. Система становится надежнее: если основной компьютер выключается, ведомые машины автоматически координируются и выбирают новый ведущий компьютер. Благодаря этому система не прекращает свою работу.