Читаем Теоретический минимум по Computer Science полностью

<p>Репликация с многочисленными ведущими</p>

Если ваша СУБД должна обрабатывать большое количество одновременных запросов на запись, то один-единственный ведущий компьютер не справится с этой задачей. В таком случае все компьютеры в кластере становятся ведущими. Для равного распределения входящих запросов на чтение и запись между машинами используется балансировщик нагрузки (рис. 6.9).

Рис. 6.9. Распределенная база данных с многочисленными ведущими машинами

Каждый компьютер подключен ко всем остальным, находящимся в кластере. Они делят запросы на запись между собой, в результате чего все остаются синхронизованными. Каждый из них имеет копию всей базы данных.

<p>Фрагментирование</p>

Если БД получает много запросов на запись с большими объемами данных, бывает чрезвычайно трудно синхронизировать ее везде в кластере. Некоторые компьютеры могут не иметь достаточного пространства для размещения всех данных полностью. Одно из решений состоит в том, чтобы поделить базу данных между компьютерами. Поскольку каждый из них владеет лишь ее частью, маршрутизатор направляет запросы соответствующей машине (рис. 6.10).

Такая конфигурация способна обрабатывать многочисленные запросы на чтение и запись в случае с очень большими базами данных. Но с ней возможна проблема: если машина в кластере выходит из строя, фрагмент данных, за который она отвечала, становится недоступен. Для снижения риска фрагментирование можно использовать в сочетании с репликацией (рис. 6.11).

Рис. 6.10. Пример фрагментации базы данных. Запросы направляются согласно первой букве в запрашиваемом ID

Рис. 6.11. Фрагментированная база данных с тремя репликами на фрагмент

В таком случае каждый фрагмент выполняется кластером «ведущий — ведомый». Это еще более увеличивает возможность СУБД обслуживать запросы на чтение. И если один из главных серверов во фрагменте отключается от сети, ведомое устройство автоматически занимает его место — это гарантирует, что система не развалится и не потеряет данные.

<p>Непротиворечивость данных</p>

Обновления в распределенных базах данных с репликацией, выполняемые на одной машине, не распространяются немедленно по всем копиям. Проходит некоторое время, пока все компьютеры в кластере синхронизируются. Это может нарушить непротиворечивость ваших данных.

Предположим, вы продаете на сайте билеты в кино. Трафик слишком большой, поэтому база данных распределена на два сервера. Элис приобретает билет на сервере А. Боб обслуживается сервером Б и видит тот же самый свободный билет. Прежде чем информация о покупке Элис дойдет до сервера Б, Боб тоже заплатит за этот билет. Теперь два сервера имеют противоречивость в данных. Чтобы исправить ситуацию, вам придется отменить одну из продаж и принести извинения либо недовольной Элис, либо недовольному Бобу.

Системы баз данных часто содержат инструменты для снижения противоречивости данных. Например, где-то вам позволяют делать запросы, которые обеспечивают соблюдение непротиворечивости данных по всему кластеру. Однако это уменьшает производительность СУБД. В особенности сказанное касается транзакций: они могут вызывать серьезные проблемы производительности в распределенных базах данных, поскольку вынуждают выполнять координацию всех машин в кластере с блокировкой потенциально больших объемов информации.

Есть компромиссное решение между непротиворечивостью и производительностью. Если ваши запросы к БД не требуют соблюдения строгой непротиворечивости данных, то говорят, что они работают в условиях потенциальной непротиворечивости. Данные гарантированно будут непротиворечивыми в конечном счете — то есть через какое-то время. Это означает, что некоторые запросы на запись, вероятно, будут отклонены, а некоторые запросы на чтение могут вернуть устаревшую информацию.

Во многих случаях работа с потенциальной непротиворечивостью не вызывает особых проблем. Например, ничего страшного, если на странице вашего продукта отображается 284 отзыва вместо 285, потому что один из них был сделан только что.

<p>6.4. Географическая модель</p>

Многие базы данных хранят географическую информацию, такую как расположение городов или многоугольников, описывающих государственные границы. Транспортным приложениям, возможно, потребуется схема соединений автотрасс, железных дорог и станций. Бюро переписи населения нужно хранить в картографической форме тысячи переписных районов вместе с данными переписи по каждому из них.

Что интересно в таких базах данных, так это выполнение запросов в отношении пространственной информации. Например, если вы руководите службой скорой помощи, то вам нужна база данных с расположением больниц в районе. Ваша СУБД должна уметь быстро выдавать ближайшую больницу относительно любого заданного местоположения.

Перейти на страницу:

Все книги серии Библиотека программиста

Программист-фанатик
Программист-фанатик

В этой книге вы не найдете описания конкретных технологий, алгоритмов и языков программирования — ценность ее не в этом. Она представляет собой сборник практических советов и рекомендаций, касающихся ситуаций, с которыми порой сталкивается любой разработчик: отсутствие мотивации, выбор приоритетов, психология программирования, отношения с руководством и коллегами и многие другие. Подобные знания обычно приходят лишь в результате многолетнего опыта реальной работы. По большому счету перед вами — ярко и увлекательно написанное руководство, которое поможет быстро сделать карьеру в индустрии разработки ПО любому, кто поставил себе такую цель. Конечно, опытные программисты могут найти некоторые идеи автора достаточно очевидными, но и для таких найдутся темы, которые позволят пересмотреть устоявшиеся взгляды и выйти на новый уровень мастерства. Для тех же, кто только в самом начале своего пути как разработчика, чтение данной книги, несомненно, откроет широчайшие перспективы. Издательство выражает благодарность Шувалову А. В. и Курышеву А. И. за помощь в работе над книгой.

Чед Фаулер

Программирование, программы, базы данных / Программирование / Книги по IT

Похожие книги