Ниже приведен способ расчета количества лотерейных билетов, у которых есть хотя бы два последовательных числа. Математики часто применяют хитроумный трюк, состоящий в решении противоположной задачи, это мы сейчас и сделаем. Сначала мы сосчитаем количество билетов без последовательных чисел, затем вычтем результат из полного числа возможных комбинаций, чтобы найти, у какого количества комбинаций будут последовательные числа.
Сначала выберите любые шесть чисел от 1 до 44 (заметьте, что разрешается выбирать именно до 44, а не до 49, вскоре вы поймете почему). Назовите ваш выбор чисел
Используя этот трюк, вы можете сгенерировать все билеты без последовательных чисел. То есть вы просто выбираете шесть чисел от 1 до 44 и разрежаете их, увеличивая каждое из них. Значит, мы найдем число возможных комбинаций, в которых нет последовательных чисел, и оно будет таким же, как число возможных комбинаций по выбору шести чисел от 1 до 44. Последнее равно
Итак, полное количество билетов с последовательными числами будет
Если вам когда-либо настолько повезет, что вы выиграете большой приз, вам не захочется, чтобы произошло то, что случилось в Великобритании 14 января 1995 г. Тогда шла лишь девятая неделя национальной лотереи, а джекпот превзошел немалую сумму в £ 16 миллионов. Когда шесть шаров выпали из лототрона, то победители наверняка прыгали у диванов и кричали от счастья. Но когда они пришли за выигрышем, то каждый из них обнаружил, что ему придется поделить джекпот с другими 132 обладателями счастливых билетов. Каждый из победителей получил пустяк в £ 122 510.
Но как получилось, что так много людей угадали правильную комбинацию? Дело заключается в том обстоятельстве, которое я отметил, когда мы рассматривали игру «Камень, ножницы, бумага»: мы, люди, печально известны своим неумением выбирать случайные числа. Нужно принять во внимание, что 14 миллионов человек играют в национальную лотерею, и многих из них притягивают схожие числа, например число удачи 7 либо дни рождений или юбилеев (что исключает числа 32–49). Также для выбора многих людей характерно то, что они стремятся распределить свои числа равномерно.
Вот выигравшие числа девятой недели лотереи:
Такое равномерное распределение чисел не слишком-то характерно для случайных процессов: числа могут собираться вместе и отталкиваться с одинаковой вероятностью. Из 13 983 816 различных возможных комбинаций лотерейных билетов у 6 924 764 будут хотя бы два последовательных номера. Это составляет 49,5 %, что очень близко к половине всех комбинаций. Например, в предшествовавшую неделю выпали номера 21 и 22. А в последовавшую неделю были 30 и 31.