Давайте теперь отправим нашего исследователя в путь с белой эластичной веревкой, которую он будет класть на поверхность за собой. Когда путешественник снова вернется к началу, он соединит концы веревки, так что получится петля вокруг планеты. Затем он пойдет в другом направлении с черной эластичной веревкой, пока не вернется к месту старта. Если планета представляет собой шар с несколькими пиками или провалами, то исследователь сможет, не разрезая веревки, переместить черную петлю поверх белой. Но, если у планеты форма бублика, такое не всегда возможно. Если черная веревка обернута вокруг планеты, заходя в дырку бублика, а белая веревка уложена по кругу, проходящему по внешнему краю бублика, то нельзя совместить черную и белую петли, не разрезая их. Итак, путешественник сможет сказать, есть ли в планете дыра, совершив несколько путешествий. Не покидая поверхности планеты, он выяснит, какова ее форма.
Вот два других, более курьезных способа сказать, находитесь ли вы на планете в форме шара или в форме бублика. Представьте, что обе планеты покрыты мехом. Исследователь на бублике сумеет так причесать его, что мех всюду будет лежать гладко. Например, зачесывая мех в дыру с одной стороны и из дыры с другой стороны. Но у исследователя на меховом шаре будут проблемы; как бы он ни старался, обязательно найдется место, где мех будет торчать.
Любопытно, что у этого обстоятельства имеется странное следствие для погоды на этих двух планетах. Можно представить, что направление меха характеризует то направление, в котором дует ветер в этих двух различных мирах. На шаре всегда найдется место, где не дует ветер (там, где торчит мех). Но на бублике ветер может дуть по всей планете.
Другое отличие этих двух планет состоит в картах, которые на них могут быть нарисованы. Поделите каждую из планет на разные страны и затем попытайтесь раскрасить карты так, чтобы любые две страны с общей границей были окрашены в разные цвета. Для сферической поверхности Земли вам всегда будет достаточно лишь четырех красок. Поглядите на фрагмент карты Европы, на то, как Люксембург втиснулся между Германией, Францией и Бельгией, – и становится понятно, что нужны как минимум четыре краски. Но удивительно именно то, что больше и не потребуется – не существует возможности перекроить границы в Европе так, чтобы заставить картографов покупать пятую краску. Но доказать это утверждение нелегко. Для этого математикам пришлось прибегнуть к помощи компьютера – он проверил несколько тысяч карт, чтобы удостовериться, что не существует какой-то патологической, для которой понадобится пятая краска. На рисование всего этого от руки ушло бы слишком много времени.
А что же у картографов, живущих на планете в форме бублика, – сколько ведерок с краской потребуется им? Оказывается, существуют карты для поверхности бубличной планеты, для которых нужны семь красок. Вспомните, как для игры «Астероиды» мы сворачивали прямоугольный экран, чтобы изготовить бублик. Мы соединяли верх и низ, чтобы сделать цилиндр, а затем соединяли концы цилиндра и получали бублик. На рис. 2.44 представлена карта для поверхности бублика до проведения этих соединений. Для раскрашивания этой карты нужно семь красок.
Теперь, после того как мы совершили путешествие по математике пузырей и бубликов, фракталов и пены, мы готовы взяться за наиглавнейший вопрос математики формы.
Какова форма нашей Вселенной?
Над этим вопросом человечество билось на протяжении тысячелетий. Древние греки полагали, что Вселенная ограничена небесной сферой (твердью), на внутренней поверхности которой нарисованы звезды. Эта сфера вращалась, совершая оборот за 24 часа, что объясняло движение звезд. Но эту модель нельзя признать удовлетворительной: если мы отправимся в космическое путешествие, то что же – в конечном счете налетим на стенку? А если так, то что находится по ту сторону стенки?
Исаак Ньютон одним из первых предположил, что у нашей Вселенной, возможно, нет границы – что она бесконечна. Сколь ни привлекательна идея бесконечной Вселенной, она не соотносится с современной теорией возникновения Вселенной при Большом взрыве и ее последующего расширения из концентрированного сгустка материи и энергии. Мы теперь считаем, что в пространстве находится лишь ограниченное количество материи. Но как Вселенная может быть конечна и при этом не иметь границы?