Кеплер считал, что шестиугольники, определяющие то, как происходит совместная упаковка шаров, также обуславливают наличие шести лучей у снежинок. Его анализ лег в основу книги, которую он посвятил императорскому советнику Иоганну Маттею Вакеру фон Вакенфельсу и преподнес в качестве новогоднего подарка – что было прозорливым поступком со стороны ученого, всегда ищущего источники финансирования исследований. Кеплер полагал, что капли воды, замерзая в облаках и превращаясь в шарики, заполняют пространство подобно зернышкам граната. Его идея, хотя и была красивой, оказалась неверной. Подлинная причина шестилучевой формы снежинки связана с молекулярной структурой льда, которую было возможно исследовать лишь после изобретения рентгеноструктурного анализа в 1912 г.
Молекула воды состоит из одного атома кислорода и двух атомов водорода. Когда молекулы связываются вместе и образуют кристалл, каждый атом кислорода разделяет свои атомы водорода с соседними атомами кислорода и, в свою очередь, заимствует два дополнительных атома водорода у других молекул воды. Итак, в кристалле льда каждый атом кислорода соединен с четырьмя атомами водорода. В модели шариков и палочек четыре шарика, представляющие атомы водорода, расположены вокруг атома кислорода так, чтобы каждый атом водорода находился от трех других атомов водорода на как можно большем расстоянии. Математика дает решение, удовлетворяющее этому требованию, и оно состоит в том, что атомы водорода находятся в вершинах тетраэдра, Платоновой формы, состоящей из четырех равносторонних треугольников. При этом атом кислорода находится в центре тетраэдра (рис. 2.20).
Получающаяся кристаллическая структура в чем-то соответствует укладке апельсинов продавцом фруктов, когда над тремя апельсинами одного слоя находится апельсин из следующего слоя. Но если вы приглядитесь к отдельному слою, будь то апельсины или кристалл льда, то всюду увидите шестиугольники. Именно они играют ключевую роль в форме снежинки. Итак, у Кеплера была верная интуиция – укладка апельсинов и шесть лучей снежинки действительно связаны, но, лишь когда мы сумели рассмотреть атомную структуру снега, мы поняли, где скрываются шестиугольники. При росте снежинки молекулы воды прикрепляются к вершинам шестиугольника, в результате чего у нее и образуются шесть лучей.
При переходе от молекулярного уровня к большим снежинкам начинает проявляться индивидуальность каждой из них. В то время как симметрия лежит в основе строения кристалла льда, другая важнейшая математическая форма контролирует эволюцию всех снежинок: фрактал.
Какова длина береговой линии Британии?
Чему равна длина британской береговой линии? 18 000 км? Или же 36 000? А может быть, еще больше? Как ни удивительно, ответ на этот вопрос вовсе не очевиден, и он связан с математической формой, открытой лишь в середине XX в.
Конечно, из-за приливов и отливов, происходящих дважды в день, длина британской береговой линии постоянно меняется. Но, даже если зафиксировать уровень воды, по-прежнему неясно, какова протяженность береговой линии. Тонкость состоит в том, с насколько малым масштабом вы измеряете длину побережья. Вы можете начать укладывать метровые линейки, одну за другой, и сосчитать, сколько их вам понадобится, чтобы обойти вокруг страны. Но использование жестких линеек упустит множество деталей меньшего масштаба.
Если вы используете длинный кусок веревки вместо жестких линеек, то сможете лучше отследить сложные формы на побережье. Измерение с помощью веревки даст значительно больший результат для береговой линии по сравнению с жесткими линейками. Но и у гибкости веревки есть предел – вам будут недоступны контуры на побережье сантиметрового масштаба. Если вы используете тонкую нитку, то сможете уловить еще больше деталей, и оценка длины береговой линии снова возрастет.
Согласно данным Картографического управления Великобритании, протяженность ее береговой линии составляет 17 819,88 км. Но измерьте эту длину с учетом более мелких деталей, и вы удвоите ее. В качестве иллюстрации того, насколько трудно точно установить географические длины, упомяну, что в 1961 г. Португалия заявила, что протяженность ее границы с Испанией составляет 1220 км, а по мнению Испании, она была лишь 990 км. Такую же степень расхождения можно найти у границы между Голландией и Бельгией. В общем случае – чем меньше страна, тем длиннее у нее получается граница…
Но можно ли положить предел этому процессу? Или же чем более мы отслеживаем детали, тем длиннее получается побережье? Чтобы показать, как такое возможно, давайте построим часть математической береговой линии. Для этого вам понадобится моток бечевки. Начните с того, что размотайте 1 метр бечевки и положите ее на пол.