Читаем Тайная жизнь чисел полностью

он прекрасно понимает их, даже не зная, что эта формула описывает закон сохранения импульса в жидкости.

Математическая мысль следовала многими трудными путями, пока не обрела нынешнюю форму: теперь математики всего мира могут понять друг друга, так как используют общий метаязык. Воздадим дань уважения тем, кто, часто из соображений простоты, вводил универсальные знаки, как, например,

и тем, кто соглашался использовать обозначения в своих работах. До появления этих символов и сокращений математика была чрезвычайно многословной и непонятной.

Попробуйте описать привычное всем квадратное уравнение

словами, не используя ни показатели степени, ни буквы, ни знаки =, + и —, ни знак деления, ни , ни даже логический символ <=>. Посмотрим, что у вас получится.

Авторы многих из этих знаков не слишком известны: так, например, скромный священник Уильям Отред (1574–1660) первым стал обозначать умножение знаком х, ввел сокращения sinα и cosα, а также изобрел круговую логарифмическую линейку. За всю жизнь он написал всего один труд объемом 88 страниц и в свое время считался математиком-любителем. В тот период эта наука, можно сказать, пребывала в нежном возрасте.

Когда же математика повзрослела? Один из ответов звучит так: когда было напечатано достаточно книг по математике, чтобы стало возможным определить универсальные обозначения. В 1875 году в Великобритании был учрежден комитет по унификации печатных книг, а также используемых при печати символов и сокращений. Много воды утекло с тех пор, и на свет появились совершенно новые разделы математики и математические теории, однако общие обозначения остались неизменными.

У логики есть своя логика

Американский математик и логик Уиллард Ван Орман Куайн (1908–2000) запомнился прежде всего подробными исследованиями взаимосвязей между обычным языком и языком науки. Многие ученые разделяли его точку зрения, высказанную в активной дискуссии с Жаком Деррида и другими деконструктивистами, которых Куайн считал псевдофилософами, а то и вовсе шарлатанами. Ван, как называли его друзья, много печатал на машинке, и как-то раз, направив свой ум в практическое русло, решил поменять местами несколько клавиш на клавиатуре. В частности, чтобы сэкономить время, он заменил символы «1», «!» и «?» другими, особыми логическими знаками, которые часто встречались в его записях. Как же Куайн обходился без привычных всем восклицательного и вопросительного знаков? Когда друзья спросили его об этом, то получили абсолютно логичный ответ: «Видите ли, в моем кабинете я работаю только с достоверными результатами».

Сложное домашнее задание

Американский математик Джордж Бернард Данциг (1914–2005) известен среди специалистов по линейному программированию как автор алгоритма, применяемого в решениях симплекс-методом, который играет основную роль в дисциплине под названием исследование операций. Среди любителей анекдотов он известен тем, что принял за домашнюю работу задачи, являвшиеся темой серьезных исследований.

Но эта история заслуживает более подробного рассказа.

В 1939 году одним из университетских преподавателей Данцига стал известный польско-американский математик Ежи Нейман (1894–1981), который вел курс статистики. Как-то раз Данциг опоздал на занятия и попросил Неймана не стирать написанное на доске, так как не хотел терять нить рассуждений. Он обратил внимание на два выражения, которые посчитал домашним заданием, и переписал их к себе в тетрадь. Придя домой, Данциг принялся за домашнее задание, однако оно оказалось на удивление трудоемким. Студент потратил много времени и сдал работу с опозданием. «Оставь ее в углу», — сказал Нейман, кивнув на стол, заваленный огромной кипой бумаг. Данциг молча положил свою работу сверху.

Прошло несколько недель, и однажды в воскресенье Данциг услышал звонок в дверь. Перед ним стоял взволнованный Нейман, державший в руках исписанные листы. «Быстро прочитай все, что здесь написано, — я намерен сегодня же передать это для публикации». Нейман держал в руках домашнюю работу Данцига, изложенную в виде статьи и дополненную предисловием самого Неймана. Данциг ошибочно принял за домашнее задание две важные статистические гипотезы, которые никому до этого не удавалось доказать. Он не знал об этом и доказал их, посчитав гипотезы всего лишь непростыми задачами.

Все заканчивается на «АС»
Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное