Исследователи предложили подход, при котором профессиональная деятельность раскладывалась на многочисленные компоненты и каждый из них оценивался с точки зрения возможностей его автоматизации. В этой модели работа, например, ассистента по заполнению налоговых деклараций, классифицируется не как одно занятие, а как серия задач, поддающихся автоматизации (обзор поступивших документов, расчет максимальных отчислений, поиск несоответствий в документах и т. д.), и тех, которые ей не поддаются (встречи с новыми клиентами, доведение принятых решений до каждого из клиентов и т. д.). Затем группа ОЭСР применила вероятностную модель и расcчитала, какой процент рабочих мест может оказаться «в зоне высокого риска» (если автоматизации поддаются не менее 70 % профессиональных задач). Как уже говорилось, расчеты показали, что в США в эту зону попадают всего 9 % трудящихся. Применив ту же модель для 20 других стран, ученые из ОЭСР установили, что доля профессий с высоким уровнем риска будет равна 6 % в Корее и 12 % в Австрии. Казалось, можно не волноваться: исследование подтвердило, что слухи о грядущей безработице сильно преувеличены. Но, как и следовало ожидать, дебаты не утихали. Подход ОЭСР, основанный на автоматизации задач, стал преобладающим среди исследователей, однако не все они согласились с оптимистичными выводами, изложенными в докладе. В начале 2017 года исследователи из PwC, пользуясь тем же подходом, провели собственный анализ и обнаружили, что к началу 2030-х годов в Соединенных Штатах высокому риску уничтожения из-за автоматизации подвергнется 38 % рабочих мест[83]. Расхождение с результатом в 9 %, полученным учеными из ОЭСР, которые просто использовали для расчетов немного другой алгоритм, было значительным. Исследователи из PwC, как и их предшественники, вскоре заявили, что их прогноз касается технических возможностей автоматизации, а на самом деле изменения на рынке труда будут протекать более мягко благодаря нормативной, правовой и социальной динамике.
Исследователи из Глобального института McKinsey попытались найти некое усредненное решение. Я помогал институту в проведении его исследований, связанных с Китаем, и стал соавтором научной статьи, посвященной китайскому цифровому ландшафту. Используя все тот же подход, основанный на разделении каждой профессии на ряд задач, команда компании McKinsey подсчитала, что около 50 % рабочих задач по всему миру уже автоматизировано[84]. Для Китая этот процент был несколько выше – 51,2 %, а для США – немного ниже – 45,8 %. Поэтому, когда дело дошло до оценки фактических последствий для рынка труда, исследователи McKinsey были менее пессимистичными. При быстром внедрении методов автоматизации (сценарий, наиболее сопоставимый с приведенными выше результатами) к 2030 году может быть автоматизировано 30 % профессиональных задач во всем мире, но только 14 % трудящихся вынуждены будут поменять специальность. Итак, о чем же говорит нам проведенный обзор научных статей? Оценки экспертов относительно сокращения рабочих мест в Соединенных Штатах варьируются в пределах от 9 % до 47 %. И даже если придерживаться подхода, основанного на автоматизации задач, то все равно останется разброс в диапазоне от 9 % до 38 %, то есть от относительного благополучия до самого настоящего кризиса. Такая разница в оценках не должна вызывать у нас недоумения. Однако нам стоит подумать о том, чему эти исследования могут научить нас – и чего, они, вероятно, не отражают.
О чем не говорят исследования