Итак, после приравнивания скорости света к единице и объявления её безразмерной величиной у нас остаются только две независимых размерности: время и масса (или, если так будет удобнее, расстояние и масса). Одним из следствий такого необычного подхода является то, что он позволяет, помимо расстояния и времени, приравнять размерности и других величин. Например, знаменитая формула Эйнштейна E = mc2 устанавливает эквивалентность массы и энергии. В нашей системе единиц, где скорость света c равна безразмерной единице, размерность массы оказывается такой же, как и размерность энергии. Давайте подумаем, что формально делает формула Эйнштейна. Она устанавливает взаимно однозначное соответствие между массой и энергией, то есть если у нас что-то обладает некоей энергией, то это что-то обладает эквивалентной этой энергии массой, и наоборот. Если переводной коэффициент между массой и энергией становится безразмерной единицей, то величина массы становится тождественно равной величине энергии. Это освобождает нас от необходимости использовать для измерения массы величин типа килограмма или фунта, мы можем измерять её в тех же единицах, в которых измеряем энергию: в джоулях или калориях. Именно так и поступают физики, изучающие элементарные частицы: они измеряют массы частиц в электрон-вольтах. Электронвольт — это энергия, которую приобретает электрон, если его разогнать разностью потенциалов в один вольт. Вместо того чтобы записывать массу электрона как 10-31 г, физики записывают её как 0,511 МэВ (мегаэлектронвольт). Поскольку в физике элементарных частиц учёные постоянно имеют дело с процессами, в которых масса частиц преобразуется в энергию и обратно, то совершенно разумно и логично использовать для измерения массы те же единицы, что и для измерения энергии, и не брать в голову никакие переводные коэффициенты из джоулей в килограммы. Существует важное правило: всегда следует использовать такие единицы измерения, которые дают наилучшее представление о масштабе явления. В ускорителях частицы разгоняются до скоростей, близких к скорости света, поэтому использование системы единиц, в которой скорость света равна единице, для таких задач очень удобно и практично. Для описания же явлений повседневной жизни такая система, наоборот, оказывается непрактичной и неудобной, поскольку приводит к необходимости оперировать очень маленькими числами. Например, скорость реактивного самолёта в единицах скорости света составляет порядка 0,000001 = 10-6.
Но это ещё не всё. Существует ещё одна фундаментальная физическая постоянная, её принято обозначать буквой h и называть постоянной Планка. Немецкий физик Макс Планк был одним из отцов-основателей квантовой механики. Он ввёл эту константу, чтобы связать энергию кванта с его частотой, а значит, постоянная Планка устанавливает связь между энергией и временем или, если вам хочется, между массой и расстоянием. Действуя так же, как мы поступили со скоростью света, примем численное значение постоянной Планка равным безразмерной единице. Что получится? Из всех размерностей у нас останется только размерность энергии, поскольку теперь мы можем выразить через энергетические единицы, например через электрон-вольты, не только энергию, но и массу, и время, и расстояние — и все остальные физические единицы измерения. Постоянная Планка связывает энергию и частоту: Е = hν, частота имеет размерность [1/секунда], тогда время в энергетических единицах будет иметь размерность [1/электронвольт]. В физике часто вместо постоянной h используется постоянная ħ, которая равна h/(2π), просто потому что так удобнее. В системе единиц, в которой с = ħ = 1, одна секунда будет равна 1,5∙1015/эВ — обратите внимание, что электрон-вольты стоят в знаменателе, обычно в таких случаях используют отрицательные показатели степени и пишут: 1,5∙1015 эВ-1.
В итоге мы создали систему, в которой три основные размерности свели к одной. Теперь мы можем описать весь физический мир, используя только размерность массы, или только размерность длины, или только размерность времени — не принципиально, какую размерность мы выберем, это уже будет результат произвольного соглашения. В физике высоких энергий удобно использовать в качестве базовой размерность энергии. Например, объём, имеющий в привычной системе единиц размерность [длина3], в новой системе, в которой с = ħ = 1, будет иметь размерность [1/энергия3], потому что длина в этой системе имеет ту же размерность, что и время, а время имеет размерность, обратную размерности энергии. Численно 1 м3 будет равен 1,3∙1020 эВ-3.