Примерно в то время, когда заключалось это пари, в Стэнфордском университете профессор по имени Эндрю Ын читал лекцию аспирантам о нейронных сетях. В лекции прозвучала такая фраза: «Ян Лекун – единственный человек, который по-настоящему сумел заставить их работать». Но даже сам Лекун не был уверен в будущем. На своем личном веб-сайте он описал свои исследования как нечто оставшееся в прошлом. Он описал кремниевые процессоры99, которые он разрабатывал в Нью-Джерси, как «первые (и, может быть, последние) чипы нейронных сетей, способные делать что-то полезное». Годы спустя, когда его спросили об этих словах, он отмахнулся от них, указав на то, что он и его студенты вернулись к той же идее в конце десятилетия. Но та неуверенность, которую он ощущал, явно прослеживалась в его словах. Нейронные сети нуждались в большей мощности компьютеров, но никто не понимал, какой должна быть эта мощность. Как выразился позже Джефф Хинтон: «Никто даже не удосужился задать вопрос: “А если предположить, что нам нужно в миллион раз больше?”»
В то время как Ян Лекун занимался созданием банковского сканера в Нью-Джерси, Крис Брокетт преподавал японский язык на кафедре азиатских языков и литературы в Вашингтонском университете. Затем его пригласили в Microsoft заниматься разработками искусственного интеллекта. Это был 1996 год, и гигантская научно-исследовательская лаборатория, созданная Microsoft, была еще сравнительно молодой. Компания была нацелена на создание систем, способных понимать естественный язык – язык, на котором пишут и разговаривают люди. В то время это было больше работой лингвистов. Языковеды типа Брокетта, которые изучал лингвистику и литературу у себя на родине, в Новой Зеландии, а потом в Японии и США, целыми днями составляли подробные правила, предназначенные научить машину правильно, по-человечески, составлять слова. Они объясняли машине, почему «время летит», тщательно разделяли одинаково пишущиеся разные части речи, подробно объясняли странные и во многом неосознаваемые правила, по которым англоязычные люди выбирают порядок прилагательных и т. д. Это была работа, во многом напоминающая прежний проект Cyc, осуществлявшийся в Остине, или работу по созданию беспилотного автомобиля в Университете Карнеги – Меллона до того, как туда пришел Дин Померло. Фактически это была работа по моделированию человеческих знаний, которая могла продолжаться десятилетиями, скольких бы лингвистов компания Microsoft ни нанимала. В конце 1990-х, следом за такими выдающимися учеными, как Марвин Мински и Джон Маккарти, большинство университетов и IT-компаний именно таким образом разрабатывали технологии компьютерного зрения и распознавания речи, а также понимания естественного языка. Эксперты выстраивали эти технологии по кусочкам, одно правило за другим.
Сидя в своем офисе в штаб-квартире Microsoft неподалеку от Сиэтла, Брокетт потратил почти семь лет на составление правил естественного языка. И вот однажды в 2003 году в просторном конференц-зале, расположенном на том же этаже дальше по коридору, двое его коллег представили новый проект. Они создали систему машинного перевода между двумя языками с использованием техники, основанной на статистике: как часто каждое слово появляется в каждом языке. Если набор слов появлялся с одинаковой частотой и в одном и том же контексте в обоих языках, это был вероятный перевод. Эти двое исследователей приступили к работе всего шесть недель назад и уже достигли результатов, которые, по крайней мере, хоть немного напоминали реальный язык. Брокетт наблюдал за презентацией из глубины переполненного зала, где многие сидели на перевернутых мусорных баках, так как мест не хватало, и у него случился приступ паники – сам он решил, что это сердечный приступ, – и его срочно отвезли в больницу.
Позже он назвал это «моментом прихода к Иисусу», когда он понял, что потратил шесть лет на написание правил, которые в одночасье устарели. «У моего пятидесятидвухлетнего организма был один из тех моментов, когда он увидел будущее, в котором его самого не было», – говорит он.