Специалисты по естественным языкам во всем мире вскоре пересмотрели свои подходы в пользу статистических моделей, аналогичных той, что была представлена в тот день в предместье Сиэтла. Это был лишь один из множества математических методов, которые распространились в широком сообществе исследователей ИИ в 1990-х и в 2000-х годах под такими названиями, как «случайный лес» (random forests), «ускоренные деревья» и «метод опорных векторов». Одни из этих методов применялись к пониманию естественного языка, другие – к распознаванию речи и изображений. По мере того как прогресс в исследованиях нейронных сетей замедлялся, многие из этих альтернативных методов дозревали и улучшались и начали доминировать в отдельных аспектах разработок ИИ. Все они были очень далеки от совершенства. Хотя ранних успехов статистических методов машинного перевода хватило, чтобы отправить Криса Брокетта в больницу, они были эффективны только до определенной степени и только тогда, когда применялись к коротким фразам – кусочкам предложения. Как только фраза была переведена, требовался сложный набор правил, чтобы привести ее в нужное грамматическое время, добавить к словам правильные окончания слов и согласовать ее со всеми остальными частями предложения. И все равно перевод получался путаным, и смысл лишь смутно угадывался, как в той детской игре, где вы составляете рассказ из слов или словосочетаний, написанных на клочках бумаги. Но это в любом случае превосходило возможности любой нейронной сети. К 2004 году нейронные сети рассматривались как третьесортный способ решения задач – как устаревшая технология, лучшие дни которой остались позади. Как сказал один исследователь Алексу Грейвсу, тогда еще молодому аспиранту, изучавшему нейронные сети в Швейцарии, «нейронные сети предназначены для людей, которые не разбираются в статистике». Выбирая себе специализацию в Стэнфорде, девятнадцатилетний студент по имени Ян Гудфеллоу записался на курс так называемой когнитивистики – дисциплины, изучающей вопросы мышления и обучения, – и во время одной из лекций преподаватель пренебрежительно отозвался о нейронных сетях как о технологии, которая не может справиться с операцией «исключающее или». Этому упреку было сорок лет от роду, и он уже был двадцать лет как опровергнут.
В Соединенных Штатах коннекционистские исследования почти исчезли из ведущих университетов. Единственная серьезная лаборатория, продолжавшая ими заниматься, была в Нью-Йоркском университете, где Ян Лекун в 2003 году занял должность профессора. Главным пристанищем для тех, кто все еще верил в эти идеи, стала Канада. Хинтон работал в Торонто, а один из прежних коллег Лекуна по Bell Labs, Йошуа Бенжио – тоже родом из Парижа, – руководил научной лабораторией в Монреальском университете. Как раз в эти годы Ян Гудфеллоу подал заявки в аспирантуру по информатике в разные вузы, и некоторые предложили ему место, включая Стэнфорд, Беркли и Монреаль. Он выбрал Монреаль, но, когда он туда приехал на собеседование, один из тамошних студентов стал его отговаривать. Стэнфорд занимал третье место в рейтинге учебных программ по информатике в Северной Америке. Беркли был четвертым. И оба находились в солнечной Калифорнии. Монреальский университет занимал где-то сто пятидесятое место, и там было холодно.
– Стэнфорд! Один из самых престижных университетов в мире! – уговаривал его этот монреальский студент, с которым они гуляли по городу, все еще покрытому снегом, хотя дело было поздней весной. – Какого черта, о чем ты думаешь?
– Я хочу изучать нейронные сети, – сказал ему Гудфеллоу.
По иронии судьбы, в то время самое время, когда Гудфеллоу занимался нейронными сетями в Монреале, один из его прежних профессоров, Эндрю Ын, познакомившись с результатами исследований, которые продолжали поступать из Канады, решил сам заняться этим в своей лаборатории в Стэнфорде. Но он слыл чудаком и имел слишком мало влияния как в своем собственном университете, так и в более широком научном сообществе, не говоря уже о том, что у него не было никаких доказательств, которые позволили бы убедить окружающих в том, что нейронные сети стоят того, чтобы их исследовать. Где-то в этот период он выступил с докладом на семинаре в Бостоне и предсказал скорый подъем в исследованиях нейронных сетей. В середине его выступления профессор из Беркли Джитендра Малик, один из фактических лидеров сообщества разработчиков компьютерного зрения, встал и по примеру Мински заявил, что все это бессмыслица и что самодовольные заявления докладчика не имеют под собой абсолютно никаких оснований.