У Лекуна выступление оппонента вызвало чувство недоумения. Как он сказал аудитории в Нью-Йоркском университете, он согласен с тем, что одним только глубоким обучением нельзя достичь истинного интеллекта587 и что никогда не говорил обратного. Он согласен с тем, что ИИ требуется врожденная машинерия588. Ведь нейронная сеть сама по себе и есть врожденная машинерия. С чего-то надо начинать, прежде чем запустится процесс самообучения. В ходе дебатов Лекун был сдержан и даже вежлив. Но в дальнейшем его тон изменился. Когда Маркус опубликовал свою первую статью, ставившую под сомнение будущее глубокого обучения, Лекун ответил твитом589: «Количество полезных советов, когда-либо данных Гэри Маркусом, равно нулю».
Маркус был не один такой. Многим теперь претила неунимающаяся волна шумихи вокруг слов «искусственный интеллект», поднимаемая прессой и рекламой. Компания Facebook была в авангарде революции глубокого обучения и видела в этой технологии ответ на самые насущные проблемы. Однако становилось все более очевидным, что это в лучшем случае частичное решение. На протяжении многих лет такие компании, как Google и Uber, обещали, что вот уже скоро на дорогах появятся беспилотные автомобили, которые будут перевозить обычных людей по городам Америки и других стран. Но даже охочие до сенсаций журналисты начали понимать, что эти утверждения сильно преувеличены. Хотя благодаря глубокому обучению они научились значительно лучше распознавать людей, препятствия и дорожные знаки и быстрее прогнозировать дорожные условия и планировать маршруты, беспилотные автомобили все еще были далеки от того, чтобы уметь справляться с хаосом повседневного дорожного трафика наравне с людьми. Хотя в Google рассчитывали открыть к концу 2018 года сервис беспилотных такси в городе Финиксе, штат Аризона, этого не произошло. Что касается разработки лекарств – области, которая выглядела такой многообещающей, после того как Джордж Даль и его коллеги из Торонто выиграли конкурс Merck, – то это оказалось гораздо более сложной задачей, чем первоначально думали. Вскоре после прихода в Google Даль отошел от этой идеи. «Проблема в том, что та часть процесса разработки лекарств, в которой мы больше всего могли бы помочь, является далеко не самой важной, – говорит он. – В общем итоге – а выход нового лекарства на рынок обходится в 2 миллиарда долларов – она составляет сущую мелочь». Орен Эциони, бывший сотрудник Вашингтонского университета, возглавлявший в Сиэтле Институт искусственного интеллекта имени Аллена, часто говорил, что, несмотря на весь ажиотаж вокруг глубокого обучения, ИИ не сможет даже пройти школьный экзамен по естествознанию.
Представляя в июне 2015 года новую парижскую лабораторию Facebook, Ян Лекун сказал: «Следующим большим шагом на пути технологии глубокого обучения является понимание естественного языка590 – чтобы машина научилась понимать не только отдельные слова, но и целые предложения и абзацы». Это была высокая цель для всего сообщества исследователей ИИ – следующая важная веха после того, как ИИ научился распознавать изображения и слова. Машина, способная понимать естественную речь людей, устную и письменную, – и даже поддерживать беседу – была стратегической целью разработок ИИ начиная с 1950-х годов. Но к концу 2018 года вера многих пошатнулась.
Ближе к концу дебатов, когда Маркус и Лекун отвечали на вопросы аудитории, женщина в желтой блузке встала и спросила Лекуна, почему прогресс с пониманием естественной речи застопорился.
– Революция, аналогичная распознаванию образов, так и не произошла591, – сказала она.
– Я не совсем согласен с вашим утверждением, – сказал Лекун. – Есть, например…
– Что например? – перебила она его.
– Перевод, – сказал он.
– Машинный перевод, – возразила она, – не равносилен пониманию речи.
Примерно в то же самое время, когда проходили эти дебаты, ученые из Алленовского института искусственного интеллекта представили новый тип теста по английскому языку для компьютерных систем592. Проверялась способность машины заканчивать фразы593 типа такой:
Женщина на сцене садится за рояль. Она
А. сидит на скамейке, пока ее сестра играет с куклой.
B. улыбается кому-то, пока играет музыка.
C. среди толпы наблюдает за танцующими.
D. нервно кладет пальцы на клавиши.
Машины показали себя не на высоте. В то время как люди правильно отвечали на 88 процентов вопросов теста594, система ИИ, созданная Алленовским институтом, смогла одолеть лишь около 60 процентов. У других машин результат был значительно хуже. И вот примерно через два месяца группа сотрудников Google во главе с Джейкобом Девлином представила систему, которую они назвали BERT595. Тестирование показало, что система BERT смогла ответить на столько же вопросов, на сколько мог ответить человек596. И при всем том разрабатывалась она совсем не для прохождения теста.