В качестве примера на рис. 4.4 представлена спектральная зависимость чувствительности и коэффициента собирания одного из солнечных элементов из монокристаллического кремния с ПОП-структурой и тонким промежуточным слоем (десятки ангстрем) оксида SiOx на поверхности кремния. Верхний прозрачный проводящий слой (пленка ITO)[8] был нанесен методом химической пульверизации из смеси оксидов индия и олова. Толщина этого слоя 700 А (при поверхностном слоевом сопротивлении около 120 Om/?), вследствие чего он одновременно выполнял роль эффективного просветляющего покрытия. У полученных солнечных элементов при измерении на имитаторе внеатмосферного Солнца КПД составлял 10,8 %. Это значение может быть существенно увеличено путем снижения последовательного сопротивления элементов, в частности, за счет оптимизации свойств пленки ITO, а также размеров и толщины контактной сетки на верхней освещаемой поверхности элементов.
Для получения дешевых и в то же время достаточно эффективных солнечных элементов перспективно использование кремниевых слоев, полученных на графитовых пластинках или пленках (так называемого «кремния на графитовой ткани»).
Типичный процесс изготовления дешевых и высокоэффективных солнечных элементов, как показано в ряде детальных исследований, состоит из следующих этапов:
распыление расплава металлургического кремния и его очистка посредством многократного выщелачивания в водной среде;
осуществление направленной кристаллизации расплава на поверхности термостойких графитовых пластин, лент или тканей (служащих подложками), в результате которой образуются слои металлургического кремния
последовательное выращивание эпитаксиального слоя p-Si толщиной ~25 мкм с удельным сопротивлением 0,1–1,0 Омxсм и неоднородно легированной пленки n+-Si толщиной ~10 мкм методом химического осаждения из паровой фазы с использованием термически активированной реакции восстановления трихлорсилана (необходимая легирующая примесь содержится в водороде) при температуре подложки около 1150o C и средней скорости роста ~1 мкм/мин;
получение контактной сетки с помощью вакуумного испарения Ti и Ag через металлическую маску;
создание просветляющего покрытия из SnO2 путем окисления тетраметилолова пои температуре 400o C в атмосфере Аr;
отжиг полученной структуры в атмосфере Не, стимулирующий диффузию примесей к границе зерен.
Графитовая пластина служит омическим контактом к
Проводимые испытания стабильности солнечных элементов рассмотренных моделей должны выявить физико-химическую совместимость всех слоев, использованных в таких многослойных структурах, при непрерывном освещении и повышенной температуре. Несомненно, однако, что для обеспечения длительной эксплуатации новых солнечных элементов потребуется тщательная герметизация и защита их от влияния внешней среды.
Тонкопленочные солнечные элементы из аморфного кремния и других полупроводниковых материалов
В настоящее время большое число исследований посвящено тонкопленочным солнечным элементам на основе аморфного кремния, так называемого ?-Si, — интересного полупроводникового материала, который получается в основном разложением соединений кремния в высокочастотном разряде в вакууме.