Следует отметить, что оптические характеристики прозрачных солнечных элементов из различных полупроводниковых материалов с отражающими покрытиями на тыльной стороне весьма близки к оптическим характеристикам дихроических светоделительных зеркал, что делает весьма перспективным применение таких солнечных элементов для создания высокоэффективных фотоэлектрических систем со спектральным разделением солнечного излучения и последующим преобразованием его в электроэнергию элементами с различной спектральной чувствительностью. Прозрачные солнечные элементы могут при этом выполнять одновременно две функции: активно преобразующего элемента системы и светоделительного зеркала.
Советскими специалистами была впервые высказана также идея о том, что можно создать двусторонние солнечные элементы, совмещая элементы, прозрачные в инфракрасной области спектра, с элементами с изотипным переходом у тыльной поверхности
Введение изотипного перехода в конструкцию прозрачных солнечных элементов позволяет резко снизить скорость поверхностной рекомбинации
В отличие от самых первых моделей элементов двусторонней конструкции с двумя
Изготовление двусторонних солнечных элементов не сложнее производства солнечных элементов и батарей с односторонней чувствительностью, прошедших многолетнюю проверку при эксплуатации в космосе. Изотипный барьер под сетчатым тыльным контактом можно создать ионным подлегированием бором с последующим термическим отжигом или нанесением методом химической пульверизации прозрачной токопроводящей пленки SnO2 (образование изотипного перехода происходит при этом в основном за счет влияния встроенного электрического заряда).
G целью увеличения эффективности двусторонних солнечных элементов с изотипным тыльным переходом желательно использовать при создании базового слоя более высокоомный, чем обычно, материал, например, перейти от монокристаллического кремния с p=0,5?1,5 Омxсм к кремнию с p=7,5?10 Омxсм (или уменьшить толщину базового слоя).