Увеличения КПД солнечных элементов из аморфного кремния следует добиваться одновременно с улучшением стабильности их характеристик, ибо фотопроводимость некачественных пленок ?-Si: H может уменьшиться в десять раз и более за семь-восемь часов непрерывного освещения, а при нагреве выше 300o C начинается экзодиффузия водорода из пленок, резко ухудшающая их параметры. Улучшению стабильности и качества пленок аморфного кремния способствует трехстадийный метод их получения. Сначала на подложку наносится пленка ?-Si, не содержащая водорода (методом испарения в высоком вакууме с помощью электронного луча или термически). Скорость конденсации этого слоя 2–5 А/с. Затем проводится отжиг, уплотняющий пленку и уменьшающий количество и объем микропустот. После этого осуществляется гидрогенизация пленок ?-Si при обработке в водородной плазме с использованием сильноточных плазменных источников, позволяющих получить ионы водорода с энергией 20–25 кэВ, насыщающие пленки аморфного кремния на глубину до 0,3 мкм. Таким методом получаются стабильные пленки высокого качества, вероятно, за счет практического отсутствия микропустот в них.
Стабилизации свойств и увеличению фотопроводимости таких пленок способствуют также лазерный отжиг, ионное легирование, подогрев подложки до 200–400 °C при их нанесении. У солнечных элементов с
Из-за высокого последовательного сопротивления аморфных солнечных элементов КПД солнечных батарей на их основе не превышает 2–3 % (велики потери на коммутацию). Несмотря на относительно невысокий КПД, уже в настоящее время небольшие экономичные солнечные батареи, состоящие из восьми последовательно соединенных солнечных элементов из аморфного кремния, вырабатывающих мощность всего лишь 4,5 мкВт/см2 при свете люминесцентной лампы (освещенность около 300 люкс), широко используются на практике для электропитания малогабаритных электронных часов и калькуляторов со световыми индикаторами на жидких кристаллах. Спектральная чувствительность элементов из аморфного кремния в близкой к ультрафиолетовой области солнечного спектра превосходит чувствительность солнечных элементов из монокристаллического кремния (рис. 4.6) и напоминает спектральную зависимость чувствительности человеческого глаза, что делает перспективным применение таких элементов также в фото- и киноэкспонометрах.
Длительное время лидирующее положение среди тонкопленочных солнечных элементов занимали различные гетероструктуры на основе тонких пленок соединений