Низкое значение времени жизни и диффузионной длины неосновных носителей заряда в легированном слое приводит к необходимости уменьшения толщины этого слоя до значений в диапазоне 0,15—0,5 мкм. Поглощение инфракрасной области солнечного излучения (? от 1,1 до 2,5 мкм) элементом с легированным слоем такой толщины не превышает 1–3 %. Таким образом, тенденция к уменьшению глубины залегания
Два других препятствия — поглощение излучения в сплошном тыльном контакте и высокое отражение от тыльной поверхности элемента — были преодолены путем замены сплошного тыльного контакта на сетчатый и нанесения просветляющего покрытия с оптической толщиной 0,3–0,4 мкм. Расчет показал, что при сетчатом тыльном контакте определенной конфигурации можно сохранить последовательное сопротивление и коэффициент заполнения нагрузочной вольт-амперной характеристики прозрачного кремниевого солнечного элемента практически на уровне элемента обычной конструкции со сплошным тыльным контактом.
Равновесная рабочая температура у прозрачных солнечных элементов из кремния в космосе значительно ниже, чем у обычных, вследствие того, что интегральный коэффициент поглощения солнечной радиации составляет, как показали данные прямых измерений этой величины в космических условиях, не 0,92—0,93 (значения, характерные для элемента обычной конструкции со сплошным тыльным контактом из плохо отражающего металла), а 0,72—0,73.
Солнечные элементы с тыльным сетчатым контактом, прозрачные в инфракрасной области спектра, начиная от длины волны 1,1 мкм, были получены в СССР из кремния и арсенида галлия и на основе тонкопленочных структур Cu2S — CdS во Франции. Как показали расчеты для геостационарной орбиты, у таких солнечных элементов в космосе температура должна понизиться на 10–15°, а выходная мощность возрасти на 5–7 %.
Прозрачные солнечные элементы из кремния и арсенида галлия были успешно использованы также для создания первых реальных моделей каскадных солнечных элементов.
Нефотоактивное длинноволновое инфракрасное излучение может быть не только пропущено сквозь прозрачный солнечный элемент, но и отражено от его тыльной поверхности к источнику излучения. Для этого на тыльную поверхность прозрачных солнечных элементов, свободную от токосъемного омического контакта, должен быть нанесен слой высокоотражающего металла, например алюминия, меди, серебра.
Отражающий слой может быть получен испарением в глубоком вакууме обычной трехслойной структуры титан — палладий — серебро непосредственно на поверхность кремния, свободную от контактных полос, или создан одновременно с алюминиевым контактом. Однако необходимое для получения хорошего омического контакта впекание алюминия при высоких температурах приводит к уменьшению коэффициента отражения таким слоем инфракрасного излучения.
Значительно выгоднее использовать для увеличения отражения в нефотоактивной части спектра слой высокоотражающего металла, нанесенный на поверхность кремния между полосами сетчатого контакта на тыльной стороне. В этом случае можно ограничиться сравнительно небольшим (до температуры 150–200 °C) подогревом поверхности кремния для увеличения адгезии слоев и сохранить отражение в инфракрасной области от границы кремний — металл на достаточно высоком уровне.
К столь же высоким значениям коэффициента отражения приводит решение аналогичной задачи другим простым и технологичным способом: приклейкой кремнийорганическим каучуком к тыльной стороне прозрачных солнечных элементов стеклопленок с нанесенным слоем алюминия или серебра. При этом к внешней поверхности элементов или группы — модуля из таких элементов — может быть приклеено стекло с нанесенной на его поверхность (обращенную к элементу) сеткой из отражающего металла в местах, расположенных над токосъемными контактами самих солнечных элементов или над электрическими соединениями между ними. Изменяя ширину полос отражающей сетки, можно регулировать температуру таких элементов при увеличении или уменьшении потока солнечного излучения. Солнечные батареи такой конфигурации обладают в космосе более низкой равновесной рабочей температурой (на 25–35 °C) и повышенной термостойкостью, что было экспериментально подтверждено в ходе длительной эксплуатации в космических условиях на борту советских межпланетных станций «Венера-9» и «Венера-10».