Эти преимущества арсенида галлия были полностью подтверждены в ходе более чем десятимесячной эксплуатации солнечных батарей, снабжавших электроэнергией советские межпланетные автоматические аппараты «Луноход-1, -2», о чем разработчики этих батарей сообщили на Всемирном электротехническом конгрессе в Москве в 1977 г.
Солнечные батареи из арсенида галлия при температуре 130–140oC на поверхности Луны генерировали выходную электрическую мощность, более чем в два раза превосходившую мощность, ожидаемую, по расчетным данным, для кремниевых солнечных батарей в этих условиях. В данном случае было особенно важно иметь высокую эффективность батарей, поскольку решение задачи осложнялось ограниченной площадью, на которой могла быть размещена солнечная батарея (откидная крышка космического аппарата). На радиатор космического аппарата было нанесено зеркальное теплоотражающее покрытие из радиационно стойких стекло-пленок со слоем алюминия или серебра на внутренней поверхности, позволявшее улучшить тепловой режим работы электронной аппаратуры этого автоматического межпланетного аппарата. Отношение интегрального коэффициента поглощения солнечного излучения αc к интегральному коэффициенту собственного теплового излучения поверхности ε данного покрытия составляло менее 0,2.
В начале и конце лунного дня при малых углах подъема Солнца над лунным горизонтом солнечное излучение, отражаясь от зеркального радиатора, попадало на откинутую крышку космического аппарата. В эти моменты с помощью телеметрической информации было четко зафиксировано увеличение тока солнечных батарей и повышение их температуры от 120 до 140oC. Радиатор использовался одновременно как своеобразный концентратор-отражатель.
Солнечные элементы с
Следует сказать, что основные пути усовершенствования солнечных элементов с