Читаем Солнечные элементы полностью

Для уменьшения потерь на отражение света был разработан метод обработки поверхности кремния, позволивший создать «неотражающий», или «черный», солнечный элемент из кремния с высоким КПД. Отличие такого солнечного элемента — особый пирамидообразный, текстурированный (рис. 4.2, а) рельеф верхней поверхности, при котором луч, однажды отраженный от одной грани выступа-пирамиды, вторично попадает на поверхность соседнего выступа, благодаря чему теряется лишь ничтожная часть света. В результате даже при отсутствии просветляющей пленки на поверхности кремния, имеющей исходный коэффициент отражения выше 30–40 %, подобный рельеф снижает потери солнечного света на отражение до ~10 %. Нанесение же просветляющей пленки (например, Ta2O5) сводит их к 2–3 % интегрально — по всему солнечному спектру.

Дополнительный эффект текстурирования поверхности — уменьшение глубины поглощения света. Происходящее в результате этого возрастание эффективного коэффициента поглощения а приводит к увеличению коэффициента собирания и плотности фототока.

Помимо традиционной плоской, планарной, конструкции в последние годы широко исследуются солнечные элементы со сложной конфигурацией p-n-переходов, в частности с p-n-переходами, расположенными по нормали к освещаемой поверхности. Они могут изготавливаться либо на общей подложке, либо набираться из отдельных микроэлементов, объединенных материалом контакта (слоем припоя или алюминия).

Вертикальное расположение p-n-переходов открывает дополнительные эксплуатационные возможности солнечных элементов. При последовательном соединении p-n-переходов солнечные элементы генерируют высокие напряжения, вплоть до десятков В/см, и эффективно работают в условиях высокой освещенности, что было убедительно показано советскими учеными, впервые получившими такие высоковольтные элементы. Параллельное включение p-n-переходов создает предпосылки для повышения фототока и, следовательно, КПД солнечных элементов.

Наиболее удачно последняя конструкция реализована в солнечных элементах с рельефной структурой поверхности, схематически изображенной на рис. 4.2, б. Рельеф в данном случае создается, так же как при текстурировании, методом избирательного травления (например, в щелочи) пластины кремния с ориентацией (110). Легированный n+-слой[6] повторяет профиль поверхности. Геометрические размеры элементов рельефа могут задаваться в широких диапазонах значений. В образцах, изготовленных американскими специалистами, разработчиками этой рельефной конструкции солнечных элементов высота. H=100÷150 мкм, шаг w⋍c⋍7–8 мкм. Рельефная фотоприемная поверхность обладает весьма высоким коэффициентом оптического поглощения, характерным для текстурированной поверхности, благодаря чему потери на отражение у рассматриваемого солнечного элемента минимальны.

Другое очевидное достоинство такого солнечного элемента — высокая объемная фоточувствительность, достигаемая за счет близкого расположения вертикальных участков p-n-перехода. Если w≪L, то практически все рожденные светом в базе пары носителей оказываются разделенными. КПД лучших образцов с рельефной структурой превышает во внеатмосферных условиях 13 %.

Улучшение оптических и фотоэлектрических характеристик солнечных элементов достигается также созданием в легированном и базовом слоях фотоэлемента тянущих электростатических полей (за счет, например, направленного изменения распределения примесей или градиента ширины запрещенной зоны по глубине элемента).

Влияние внутренних электрических полей на эффективность собирания и КПД полупроводниковых солнечных элементов исследовано достаточно хорошо. Первые работы были связаны с рассмотрением однородного поля с постоянными значениями подвижности и времени жизни носителей, не зависящими от концентрации примесей. Дальнейшее усложнение моделей солнечных элементов с встроенным полем привело к изучению неоднородных электрических полей и параметров диффузии, зависящих от пространственных координат. Однако проведенные исследования носили сугубо теоретический характер, а предлагаемые распределения примесей были трудно воспроизводимы.

Солнечные элементы практически всегда имеют внутренние электрические поля, возникающие в местах значительного перепада концентрации примеси по глубине кристалла или слоя, однако обычно эти поля носят случайный характер и являются следствием используемой технологии. В связи с этим возникает задача нахождения профилей концентрации примесей, значительно повышающих эффективность собирания носителей из легированного слоя и в то же время получаемых с помощью хорошо отработанных технологических методов.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука