Читаем Солнечные элементы полностью

Различие в результатах измерений при настройке имитаторов с помощью разных эталонов указывает на необходимость использования единого стандартного спектра наземного Солнца при градуировке эталонов. Намеченный в последнее время выбор стандартного наземного спектра (условия AM1,5), согласованного в международном масштабе, является, по-видимому, единственно правильным решением сложного вопроса градуировки наземных солнечных элементов, поскольку при этом можно проводить сопоставление эффективности и качества солнечных элементов и батарей, выпускаемых разными странами и фирмами.

Рис. 3.3. Спектральное распределение энергии солнечного излучения при различных значениях воздушной массы (расчетные данные Π. Муна)

1–6 — m=0, 1,2, 3,4, 5 соответственно

Градуировка эталонов для оценки эффективности работы солнечных элементов и батарей космического назначения с использованием общепринятого в настоящее время спектра AM0 Макаровой и Харитонова также позволяет достаточно точно настраивать лабораторные и заводские имитаторы Солнца и прогнозировать характеристики солнечных батарей при эксплуатации во внеатмосферных условиях. Труднее учесть переменную по спектру и потоку и непостоянную во времени часть солнечного излучения, отраженную от облаков и подстилающего рельефа Земли и эффективно используемую двусторонними и прозрачными в инфракрасной области спектра солнечными батареями. Однако расчетные и экспериментальные исследования, вероятно, позволят в недалеком будущем достаточно точно пред-сказывать возможное увеличение тока солнечных батарей низколетящих спутников Земли за счет этой составляющей внеатмосферного солнечного излучения.

Уже не раз подчеркивалось, что солнечный элемент, предназначенный для создания эталона, должен обладать основными особенностями, свойственными спектральным, фотоэлектрическим и оптическим характеристикам измеряемых элементов. Например, при оценке КПД партии солнечных элементов из кремния с п+—р — p+-структурой и мелкозалегающим р-n-переходом эталонный элемент должен выбираться из их числа, а для солнечных элементов из новых полупроводниковых материалов эталонный элемент следует создавать из того же полупроводникового материала при таких же толщинах и электрофизических свойствах слоев, как в структуре элемента данного типа.

Однако выполненные советскими исследователями измерения на автоматической межпланетной станции «Венера» (результаты которых опубликованы в журнале «Гелиотехника» в 1983 г.) говорят о том, что возможен и другой подход: создание стабильного солнечного элемента, например, из кремния со сравнительно глубоким p-n-переходом и внесение в его паспортные данные значений переходных коэффициентов, которыми необходимо пользоваться, если по данному кремниевому эталону настраивается имитатор Солнца при измерении параметров солнечных элементов из других полупроводниковых материалов или из того же материала, но иной конструкции.

Как было установлено в ходе полета автоматических межпланетных станций «Венера-13 и -14», при определении параметров солнечных элементов для внеатмосферных условий (спектр AM0, плотность потока излучения 1360 Вт/м2) на имитаторе Солнца из ламп накаливания без коррекции спектра с плотностью излучения 1000 Вт/м2 для кремниевого эталона с глубоким р-n-переходом (1,0–1,2 мкм) переходный коэффициент равен 1,0, а для кремниевого элемента с небольшой глубиной залегания р-n-перехода (0,3–0,5 мкм) — 1,12—1,13; для солнечных элементов на основе гетероструктуры AlGaAs-GaAs переходный коэффициент составляет 1,11—1,12 при толщине слоя AlGaAs 15 мкм, 1,2–1,21 при толщине того же слоя 10 мкм и 1,54 при толщине этого слоя менее 1 мкм.

Подобным же образом можно поступить и в случае градуировки имитаторов Солнца для измерений параметров наземных солнечных элементов. В паспорт эталона, используемого при настройке имитаторов внеатмосферного Солнца, при этом следует внести значение переходного коэффициента от AM0 к стандартным наземным условиям AM1,5, определенное или пересчитанное, как и в предыдущем случае, для такого же значения рабочей температуры, причем ток при AM0 и AM 1,5 должен быть отнесен к плотности соответствующего потока излучения. Значения подобных переходных коэффициентов были получены советскими специалистами из результатов высокогорных измерений и путем использования абсолютной спектральной чувствительности данного эталонного элемента и стандартных спектров AM0 и AM1,5.

Для кремниевых солнечных элементов с мелкозалегающим p-n-переходом (глубина 0,3–0,5 мкм) переходный коэффициент от условий AM0 к стандартным наземным условиям AM 1,5 равен, как показали результаты измерений и расчетов, 1,13—1,14.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука