Для солнечных элементов на основе гетероструктуры AlGaAs-GaAs он составляет 1,26, 1,24 и 1,18 при толщине слоя AlGaAs соответственно 15, 10 и менее 1,0 мкм. Для тонкопленочных солнечных элементов на основе гетероструктуры Cu2S-CdS переходный коэффициент от AM0 к AM1,5, как правило, равен 1,04, а для элементов на основе гетероструктуры ITO-Si этот коэффициент составляет, по результатам расчетов, 1,10-1,11.
Качественно (а в некоторых случаях и количественно) близкие результаты были получены американскими исследователями. Измеренная на фильтровом монохроматоре (источник излучения — мощная вольфрамовая лампа накаливания) спектральная чувствительность кремниевых элементов была пересчитана ими на спектры излучения Солнца для условий AM0 и AM1, что позволило затем определить интегральные значения тока короткого замыкания исследуемых элементов и переходные коэффициенты от условий AM0 к условиям AM1, равные: для обычных элементов без покрытий 1,08; для элементов с текстурированной неотражающей поверхностью, полученной селективным химическим травлением, 1,14; для обычных элементов с просветляющей пленкой из двуокиси кремния 1,15; для таких же элементов наземного назначения с большой глубиной залегания
Аналогичные данные получаются при пересчете спектральной чувствительности солнечных элементов из различных полупроводниковых материалов на новый спектр полного (прямого + диффузного) солнечного излучения при
Глава 4
НОВЫЕ КОНСТРУКЦИИ СОЛНЕЧНЫХ ЭЛЕМЕНТОВ
Высокоэффективные солнечные элементы из кремния
Среди различных типов фотоэлектрических преобразователей лишь монокристаллические кремниевые солнечные элементы в настоящее время нашли широкое применение в солнечной энергетике (например, в системах энергообеспечения искусственных спутников Земли). Большой практический опыт и знания, накопленные при производстве монокристаллических солнечных элементов из кремния, обеспечивают возможность перехода к полностью автоматизированной технологии изготовления солнечных элементов. Если к тому же учесть, что кремний относится к наиболее распространенным в природе химическим элементам, а монокристаллические кремниевые солнечные элементы обладают высокой эффективностью (КПД многих образцов достигает сейчас 18–19 %), то кремний можно считать во всех отношениях перспективным материалом для создания наземных фотогенераторов — фотоэлектрических преобразователей солнечной энергии.
Монокристаллический кремний в виде массивных образцов относится к наиболее подробно и глубоко исследованным полупроводниковым материалам. Технология получения и обработки кремния, а также изготовления электронных схем и приборов на его основе до сих пор остается базовой технологией в электронной промышленности благодаря высокому уровню развития и быстрому совершенствованию. При этом кремний занимает ведущее положение во всех областях электроники. Кроме того, кремний используется в оптоэлектронике, интегральной оптике и вычислительной технике.
Развитие высокоэффективных кремниевых солнечных элементов с обычным