Читаем Схемотехника аналоговых электронных устройств полностью

где τос — постоянная времени цепи внутренней обратной связи в транзисторе на ВЧ;

◆ активное сопротивление эмиттера rэ=25,6/Iэ,

при Iэ в миллиамперах rэ получается в омах;

◆ диффузионная емкость эмиттера Cэд=1/(2πfTrэ),

где fT — граничная частота усиления по току транзистора с ОЭ, fT=|h21эfизм ;

◆ коэффициент усиления тока базы для транзистора с ОБ α=H21э/[(1+H21э)·(1+jf/fT)],

где H21э — низкочастотное значение коэффициента передачи по току транзистора с ОЭ.

◆ Δr =(0,5…1,5) Ом;

Таким образом, параметры эквивалентной схемы биполярного транзистора полностью определяются справочными данными H21э,fT(|h21эfизм),Cк,tос(rб) и режимом работы.

Следует учитывать известную зависимость Cк от напряжения коллектор-эмиттер Uкэ:

По известной эквивалентной схеме не представляет особого труда, пользуясь методикой, изложенной в разделе 2.3, получить приближенные выражения для низкочастотных значений Y-параметров биполярного транзистора, включенного по схеме с ОЭ:

Y11эНЧ = g ≈ 1/(rб + (1 + H21э)(rэ + Δr)),

Y21эНЧS0 ≈ H21эgэ,

Y12эНЧ ≈ 0,

Y22эНЧ ≈ 0.

Частотную зависимость Y11э и Y21э при анализе усилительного каскада в области ВЧ определяют, соответственно, посредством определения входной динамической емкости Cвх.дин и постоянной времени транзистора τ.

Выражения для расчета низкочастотных Y-параметров для других схем включения транзистора получают следующим образом:

◆ дополняют матрицу исходных Y-параметров Yэ до неопределенной Yн, а именно, если

то

◆ вычеркивают строку и столбец, соответствующие общему узлу схемы (б для ОБ, к для ОК), получая матрицу Y-параметров для конкретной схемы включения транзистора.

<p>2.4.2. Полевые транзисторы</p>

Полевыми транзисторами (ПТ) называются полупроводниковые усилительные приборы, в основе работы которых используются подвижные носители зарядов одного типа — либо электроны, либо дырки. Наиболее характерной чертой ПТ является высокое входное сопротивление, поэтому они управляются напряжением, а не током, как БТ.

Рисунок 2.8. Эквивалентная схема ПТ

Определяются малосигнальные Y-параметры ПТ по его эквивалентной схеме. Для целей эскизного проектирования можно использовать упрощенный вариант малосигнальной эквивалентной схемы ПТ, представленный на рис.2.8.

Данная схема с удовлетворительной для эскизного проектирования точностью аппроксимирует усилительные свойства ПТ независимо от его типа, параметры ее элементов находятся из справочных данных

Выражения для эквивалентных Y-параметров ПТ, включенного по схеме с ОИ определяют по методике п. 2.3:

Y11з = jωCзи,

Y12з = jωCзс,

Y21и = S0ejωτ,

Y22и = gi + jωCси.

Где з, с, и соответственно затвор, сток и исток ПТ; τ — время пролета носителей, τ=Cзи/S0.

Граничную частоту единичного усиления ПТ fT можно оценить по формуле:

fT = 1/2πτ.

Анализ полученных выражений для эквивалентных Y-параметров ПТ, проведенный с учетом конкретных численных значений справочных параметров, позволяет сделать вывод о незначительной зависимости крутизны от частоты, что позволяет в эскизных расчетах использовать ее низкочастотное значение S0. При отсутствии справочных данных о величине внутренней проводимости ПТ gi, в эскизных расчетах можно принимать gi≈0 ввиду ее относительной малости.

Пересчет эквивалентных Y-параметров для других схем включения ПТ осуществляется по тем же правилам, что и для БТ.

<p>2.5. Усилительный каскад на биполярном транзисторе с ОЭ</p>

Среди многочисленных вариантов усилительных каскадов на БТ самое широкое применение находит каскад с ОЭ, имеющий максимальный коэффициент передачи по мощности KP, вариант схемы которого приведен на рисунке 2.9.

Если входного сигнала нет, то каскад работает в режиме покоя. С помощью резистора Rб задается ток покоя Iб0=(EкUбэ0)/Rб. Ток покоя коллектора Iк0=H21эIб0. Напряжение коллектор-эмиттер покоя Uк0=EкIк0Rк. Отметим, что в режиме покоя напряжение Uбэ0 составляет десятки и сотни мВ (обычно 0,5…0,8 В). При подаче на вход положительной полуволны синусоидального сигнала будет возрастать ток базы, а, следовательно, и ток коллектора. В результате напряжение на Rк возрастет, а напряжение на коллекторе уменьшится, т.е. произойдет формирование отрицательной полуволны выходного напряжения. Таким образом, каскад с ОЭ осуществляет инверсию фазы входного сигнала на 180°.

Рисунок 2.9. Простой усилительный каскад с ОЭ

Перейти на страницу:

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука
Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки