Читаем Схемотехника аналоговых электронных устройств полностью

Отметим, что ΔIк01 берется положительным, хотя εT имеет знак минус, это поясняется на рисунке 2.17.

Рисунок 2.17. Тепловое смещение проходных характеристик БТ

Определяем приращение тока коллектора ΔIк02, вызванного изменением обратного (неуправляемого) тока коллектора ΔIкбо:

ΔIк02 = ΔIкбо·(H21э + 1),

где приращение обратного тока ΔIкбо равно:

ΔIкбо = Iкбо(Tспр)·[exp(αΔT) – 1],

где α — коэффициент показателя, для кремниевых транзисторов α=0,13.

Следует заметить, что значение Iкбо, приводимое в справочной литературе, особенно для транзисторов средней и большой мощности, представляет собой сумму тепловой составляющей и поверхностного тока утечки, последний может быть на два порядка больше тепловой составляющей, и он практически не зависит от температуры. Следовательно, при определении ΔIк02 следует пользоваться приводимыми в справочниках температурными зависимостями Iкбо, либо уменьшать справочное значение Iкбо примерно на два порядка (обычно Iкбо для кремниевых транзисторов составляет порядка (n·10-7n·10-6) А, и порядка (n·10-6n·10-5) А для германиевых, n=(1…9).

Приращение коллекторного тока, вызванного изменением H21э, определяется соотношением:

ΔIк03 = H21э·(Iкбо + Iб0),

где ΔH21э = kT·H21э·ΔT, kT ≈ 0,005 отн. ед./град.

Полагая, что все факторы действуют независимо друг от друга, запишем:

ΔIк0 = ΔIк01 + ΔIк02 + ΔIк03.

Для повышения термостабильности каскада применяют специальные схемы питания и термостабилизации. Эффективность таких схем коэффициентом термостабильности, который в общем виде представляется как:

ST = ΔIк0 стабIк0.

Учитывая различный вклад составляющих ΔIк0, разное влияние на них элементов схем термостабилизации, вводят для каждой составляющей свой коэффициент термостабильности, получая выражения для термостабилизированного каскада:

ΔIк0 стаб = ST1ΔIк01ST2ΔIк02 + ST3ΔIк03.

Обычно ST2ST3, что обусловлено одинаковым влиянием на ΔIк02 и ΔIк03 элементов схем термостабилизации:

ΔIк0 стаб = ST1ΔIк01ST2Iк02 + ΔIк03).

Полученная формула может быть использована для определения ΔIк0 усилительного каскада при любой схеме включения в нем БТ.

Рассмотрим основные схемы питания и термостабилизации БТ.

Термостабилизация фиксацией тока базы. Схема каскада представлена на рисунке 2.18.

Рисунок 2.18. Каскад с фиксацией тока базы

Rб определяется соотношением:

т.к. Eк>>Uбэ0.

Очевидно, что Iб0 "фиксируется" выбором Rб, при этом ослабляется влияние первого фактора нестабильности тока коллектора (за счет смещения проходных характеристик). Коэффициенты термостабилизации для этой схемы таковы:

Отсюда видно, что данная схема имеет малую эффективность термостабилизации (ST2≈1).

Коллекторная термостабилизация. Схема каскада представлена на рисунке 2.19а.

Рисунок 2.19. Каскад с коллекторной термостабилизацией (а) и его варианты (б, в)

Rб определяется соотношением:

т.к. Uк0>>Uб0.

Термостабилизация в этой схеме осуществляется за счет отрицательной обратной связи (ООС), введенной в каскад путем включения Rб между базой и коллектором БТ. Механизм действия ООС можно пояснить следующей диаграммой:

TIк0Uк0Iб0Iк0,

↑←←←←петля ООС ←←←←↓

где символами ⇑ и ⇓ показано, соответственно, увеличение и уменьшение соответствующего параметра. Коэффициенты термостабилизации для этой схемы:

Из этих формул видно, что данная схема имеет лучшую термостабильность (ST1 и ST2 меньше единицы), чем схема с фиксированным током базы.

В схеме коллекторной термостабилизации ООС влияет и на другие характеристики каскада, что должно быть учтено. Механизм влияния данной ООС на характеристики каскада будет рассмотрен далее. Схемные решения, позволяющие устранить ООС на частотах сигнала, приведены на рисунках 2.19б,в.

В большинстве случаев, наилучшими свойствами среди простейших (базовых) схем термостабилизации обладает эмиттерная схема термостабилизациипоказанная на рисунке 2.20.

Рисунок 2.20. Каскад с эмиттерной термостабилизацией

Эффект термостабилизации в этой схеме достигается:

◆ фиксацией потенциала Uб выбором тока базового делителя Iд>>Iб0, Uб≈const.

◆ введением по постоянному току ООС путем включения резистора Rэ. На частотах сигнала эта ООС устраняется шунтированием резистора Rэ емкостью Cэ.

Напряжение Uбэ0 определяется как:

Uбэ0 = UбU.

Механизм действия ООС можно изобразить следующей диаграммой:

TIк0UUбэ0Iб0Iк0,

↑←←←←петля ООС ←←←←↓

где символами ⇑ и ⇓ показано, соответственно, увеличение и уменьшение соответствующего параметра. Эскизный расчет эмиттерной схемы термостабилизации маломощного каскада можно проводить в следующей последовательности:

◆ Зададимся током делителя, образованного резисторами Rб1 и Rб2:

Iд = (3…10)Iб0;

◆ выбираем U = (0,1…0,2)Eк ≈ (1…5) В, и определяем номинал Rэ:

◆ определяем потенциал Uб:

Перейти на страницу:

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука
Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки