Читаем Роман с Data Science. Как монетизировать большие данные полностью

Классическая математическая статистика (frequentist approach) относится к параметру как к фиксированной неизвестной константе. Байесовская статистика относится к параметру как к вероятностной величине [83]. Это чем-то похоже на разность в подходах классической и квантовой физики. Мне лично больше нравится вероятностный подход байесовской статистики, он выглядит нагляднее и естественнее, чем p-значение. Меня он так заинтересовал, что я долго искал хорошую и понятную литературу по этой теме. Очень полезной книгой оказалось «Введение в байесовскую статистику» [83] Уильяма Больстарда. Я очень ценю хорошие книги и могу назвать автора Учителем с большой буквы. Больстард очень хорошо выстроил систему вывода формул и доказательств. Я прочитал его книгу от корки до корки, решил почти все задачи в ней и написал первую версию программной библиотеки для A/Б-тестирования в Retail Rocket. Читая книгу Антонио Рохо о Рональде Фишере [76], я обнаружил интересный факт про байесовскую статистику – оказывается, она широко использовалась для оценки статистической значимости еще в дофишеровскую эпоху. Сторонники традиционного статистического подхода Фишера и сторонники байесовского подхода спорят до сих пор, какой метод лучше.

Сам преподобный Байес написал формулу так:

где:

 P (A) – априорная информация, которая говорит о наших предположениях до проведения эксперимента. Это наши убеждения (может быть, даже интуитивные) до проведения эксперимента.

 P (A | B) – апостериорная вероятность, когда формула суммирует убеждения (P (A)) до эксперимента и данные B, приводя к новым выводам, которые называются апостериорными.

 P (B | A) – (likelihood) вероятность наступления события B при истинности гипотезы A.

 P (B) – полная вероятность наступления события B.

Формула Байеса позволяет «переставить причину и следствие»: по известному факту события вычислить вероятность того, что оно было вызвано данной причиной. Для оценки параметров формулу можно переписать в другом виде:

Мы хотим получить распределение параметра (например, среднего диаметра шара) после получения данных (data) в нашем эксперименте, при этом до эксперимента мы считаем, что наш параметр подчиняется распределению P(). В [83] указаны все выкладки для биномиальных тестов, например, когда мы сравниваем конверсию посетителя в покупателя. Так и для непрерывных нормально распределенных величин, когда мы можем сравнить средний диаметр шаров в наших резервуарах или средний чек в экспериментах на интернет-магазинах. Обе эти задачи относительно легко считаются, так как там используются сопряженные (conjugate) распределения. Для расчета А/Б-теста нужно воспользоваться постериорными формулами и применить сэмплирование, это очень похоже на то, что мы делали в бустрэпе.

Важная проблема в байесовской статистике – это выбор априорного суждения, именно к ней имеет претензии классическая статистика. У априорной информации есть свой «вес» (n equal sample size), выраженный в количестве точек данных. В той же книге есть также формулы для оценки «веса» априорных распределений, выраженных в количестве точек данных. Изучая литературу, я вывел для себя следующие правила. Если ничего не знаешь – используй равномерное (uniform) распределение. Если знаешь – то лучше использовать нормальное распределение, где априорное среднее – это ваше предположение, а априорное стандартное отклонение характеризует вашу уверенность в нем. «Вес» вашей уверенности лучше оценить по формулам во «Введении в байесовскую статистику» [83] – тогда вы будете понимать, сколько данных вам понадобится, чтобы изменить точку зрения. Я предпочитаю уверенность делать меньше, чтобы эксперимент быстрее сошелся. Ваши априорные суждения можно представить себе как увеличительное стекло, которое сфокусировано в точке вашей уверенности. Если данные не будут ее подтверждать, то фокус сам сместится ближе к правильному решению. Если подтвердят, то тест сойдется быстрее, так как фокус находился в нужном месте, вы не ошиблись. Например, когда тестируются разные версии рекомендательных алгоритмов, чтобы проверить, улучшилась ли конверсия посетителей в покупателей, вы можете смело взять текущую цифру конверсии (до эксперимента) в качестве априорного среднего. Априорное стандартное отклонение не стоит делать очень узким.

Второй проблемой байесовской статистики является привязка к распределению исходной величины – оно должно быть вам известно. В этом плане бутстрэп лучше, но считается он гораздо дольше, чем байесовский метод.

<p><strong>А/Б-тесты в реальности</strong></p>
Перейти на страницу:

Все книги серии IT для бизнеса

О криптовалюте просто. Биткоин, эфириум, блокчейн, децентрализация, майнинг, ICO & Co
О криптовалюте просто. Биткоин, эфириум, блокчейн, децентрализация, майнинг, ICO & Co

Эта книга – самый быстрый способ войти в мир криптовалют и начать ими пользоваться.Вы хоть раз спрашивали себя, что такое биткоин, криптовалюта или блокчейн? А децентрализация? Как вы думаете, кто выиграл от появления интернета? Люди, которые были подготовлены к нему и стали использовать его в личных или коммерческих целях до того, как подтянулись остальные.Новая технология «блокчейн» дает аналогичную возможность. Она играет сейчас такую же роль, какую играл интернет последние 20 лет. Главный вопрос, который каждый себе задает, это «c чего мне начать?»Джулиан Хосп, соучредитель компании TenX и один из ведущих мировых экспертов по криптовалютам, просто и доступно объясняет сложные термины и дает четкую инструкцию к действию: как пользоваться криптовалютами, соблюдая правила онлайн-безопасности.У Илона Маска уже есть книга Джулиана Хоспа. А у вас?

Джулиан Хосп

Деловая литература / Маркетинг, PR, реклама / Финансы и бизнес
Роман с Data Science. Как монетизировать большие данные
Роман с Data Science. Как монетизировать большие данные

Как выжать все из своих данных? Как принимать решения на основе данных? Как организовать анализ данных (data science) внутри компании? Кого нанять аналитиком? Как довести проекты машинного обучения (machine learning) и искусственного интеллекта до топового уровня? На эти и многие другие вопросы Роман Зыков знает ответ, потому что занимается анализом данных почти двадцать лет. В послужном списке Романа – создание с нуля собственной компании с офисами в Европе и Южной Америке, ставшей лидером по применению искусственного интеллекта (AI) на российском рынке. Кроме того, автор книги создал с нуля аналитику в Ozon.ru.Эта книга предназначена для думающих читателей, которые хотят попробовать свои силы в области анализа данных и создавать сервисы на их основе. Она будет вам полезна, если вы менеджер, который хочет ставить задачи аналитике и управлять ею. Если вы инвестор, с ней вам будет легче понять потенциал стартапа. Те, кто «пилит» свой стартап, найдут здесь рекомендации, как выбрать подходящие технологии и набрать команду. А начинающим специалистам книга поможет расширить кругозор и начать применять практики, о которых они раньше не задумывались, и это выделит их среди профессионалов такой непростой и изменчивой области. Книга не содержит примеров программного кода, в ней почти нет математики.В формате PDF A4 сохранен издательский макет.

Роман Зыков

Карьера, кадры / Прочая компьютерная литература / Книги по IT

Похожие книги

10 гениев бизнеса
10 гениев бизнеса

Люди, о которых вы прочтете в этой книге, по-разному относились к своему богатству. Одни считали приумножение своих активов чрезвычайно важным, другие, наоборот, рассматривали свои, да и чужие деньги лишь как средство для достижения иных целей. Но общим для них является то, что их имена в той или иной степени становились знаковыми. Так, например, имена Альфреда Нобеля и Павла Третьякова – это символы культурных достижений человечества (Нобелевская премия и Третьяковская галерея). Конрад Хилтон и Генри Форд дали свои имена знаменитым торговым маркам – отельной и автомобильной. Биографии именно таких людей-символов, с их особым отношением к деньгам, власти, прибыли и вообще отношением к жизни мы и постарались включить в эту книгу.

А. Ходоренко

Карьера, кадры / Биографии и Мемуары / О бизнесе популярно / Документальное / Финансы и бизнес