Читаем Роман с Data Science. Как монетизировать большие данные полностью

Проблема подглядывания за результатами теста лично мне хорошо знакома. Она возникает, когда тест не набрал еще необходимых данных, а мы уже пытаемся увидеть его результаты. Статистическая значимость теста – это тоже случайная величина, и она «скачет» в первое время после запуска теста. Так происходит и на симуляциях тестов, и в реальных условиях. Я столкнулся с этим впервые в компании Ostrovok.ru, когда А/Б-тесты были выведены на дашборды офисных мониторов. Мне позвонил CEO с вопросом, почему результаты значимости недавно запущенного теста прыгают туда-сюда. Поэтому если вы примете решение в этот момент, признав тест успешным, то совершите ошибку, так как через некоторое время тест «устаканится» и будет показывать отсутствие статистической значимости. Я считаю, что единственный способ решить проблему подглядывания – определить минимально детектируемую разницу в метриках, которая вас устроит. По ней с помощью калькулятора мощности или симуляций вычисляется нужный объем выборки. И именно после достижения нужного объема данных можно смотреть на результат и принимать решения. Здесь вы столкнетесь с дилеммой – если разница слишком мала, то понадобится очень много данных, что плохо для бизнеса. Потому что чтобы получить много данных, придется долго ждать – тратить время. Рекомендую понять, сколько времени вы готовы ждать, и уже исходя из этого определить минимально детектируемую разницу. Минимальная длительность теста также ограничена бизнес-циклом принятия решений клиентами. Например, если мы знаем, что среднее время принятия решения о покупке составляет три дня, то тест должен идти не меньше двух бизнес-циклов – шесть дней. До этого времени за тестом можно приглядывать, но только с целью обнаружить пропущенные технические ошибки.

Хороший пост-анализ эксперимента гипотезы может помочь понять, что еще можно сделать для улучшения метрики. Как я уже писал, желание обнаружить ошибку, когда тест новой версии продукта провалился, естественно, как и его отсутствие, когда тест выигран. В Retail Rocket мы действительно находили в тестах ошибки не только технического характера, но и идейного. Для этого обычно применяли сводные таблицы и искали проблемы во множестве срезов. Очень приятное чувство, когда находишь ошибку или придумываешь модификацию гипотезы и побеждаешь в следующем тесте. Это можно делать и для положительных тестов, чтобы искать новые идеи по улучшению продукта.

<p><strong>А/А-тесты</strong></p>

Впервые про A/A-тесты я услышал от Ди Джея Патила – до этого я никогда к ним не прибегал. А/А-тест – это проверка последней мили, всего того, что вы сделали для теста: генератора случайных чисел, схемы сбора данных и выбранного статистического критерия для метрики. Сам тест запускается с реальным делением аудитории на две части, но в контрольной и тестовой группах используется одна и та же версия продукта. В финале вы должны получить сходящийся тест без опровержения нулевой гипотезы, так как версия продукта одна и та же.

Первое, что нужно проверить, – насколько хорошо работает генератор случайных чисел, по значениям которого будет происходить разделение на группы в тесте. Само назначение на группы можно делать двумя способами: через назначение случайного числа и через хеширование информации об объекте. Когда пользователь посещает сайт, обычно ему в куки пишут его идентификационный номер. Этот номер используется для того, чтобы узнать пользователя при повторном посещении. Для A/B-тестов этот номер хешируется, то есть его превращают из текста в число, далее берут две или три последние цифры для распределения по группам: 00–49 контрольная группа, 50–99 тестовая. Похожий принцип реализован в нашем проекте Retail Rocket Segmentator [85]. В А/А-тесте вы должны получить то же самое распределение, что и в тесте! Если распределение задано пополам, 50/50, то вы его и должны получить на выходе. Даже небольшие расхождения в 3 % в данных теста могут поставить под угрозу весь тест. Если в тесте есть 100 000 пользователей, вы хотите разделить их пополам, а в итоге получается в одной группе 48 000, а в другой 52 000 – это говорит о проблемах в «случайности» разбиения по группам. Эти распределения можно проверить и на симуляциях, когда вам точно известен алгоритм. Но моя практика показывает, что мелкие нюансы разработки, о которых мы не знаем, могут приводить к «сдвигам» распределений. Поэтому я больше доверяю A/A-тестам.

Перейти на страницу:

Все книги серии IT для бизнеса

О криптовалюте просто. Биткоин, эфириум, блокчейн, децентрализация, майнинг, ICO & Co
О криптовалюте просто. Биткоин, эфириум, блокчейн, децентрализация, майнинг, ICO & Co

Эта книга – самый быстрый способ войти в мир криптовалют и начать ими пользоваться.Вы хоть раз спрашивали себя, что такое биткоин, криптовалюта или блокчейн? А децентрализация? Как вы думаете, кто выиграл от появления интернета? Люди, которые были подготовлены к нему и стали использовать его в личных или коммерческих целях до того, как подтянулись остальные.Новая технология «блокчейн» дает аналогичную возможность. Она играет сейчас такую же роль, какую играл интернет последние 20 лет. Главный вопрос, который каждый себе задает, это «c чего мне начать?»Джулиан Хосп, соучредитель компании TenX и один из ведущих мировых экспертов по криптовалютам, просто и доступно объясняет сложные термины и дает четкую инструкцию к действию: как пользоваться криптовалютами, соблюдая правила онлайн-безопасности.У Илона Маска уже есть книга Джулиана Хоспа. А у вас?

Джулиан Хосп

Деловая литература / Маркетинг, PR, реклама / Финансы и бизнес
Роман с Data Science. Как монетизировать большие данные
Роман с Data Science. Как монетизировать большие данные

Как выжать все из своих данных? Как принимать решения на основе данных? Как организовать анализ данных (data science) внутри компании? Кого нанять аналитиком? Как довести проекты машинного обучения (machine learning) и искусственного интеллекта до топового уровня? На эти и многие другие вопросы Роман Зыков знает ответ, потому что занимается анализом данных почти двадцать лет. В послужном списке Романа – создание с нуля собственной компании с офисами в Европе и Южной Америке, ставшей лидером по применению искусственного интеллекта (AI) на российском рынке. Кроме того, автор книги создал с нуля аналитику в Ozon.ru.Эта книга предназначена для думающих читателей, которые хотят попробовать свои силы в области анализа данных и создавать сервисы на их основе. Она будет вам полезна, если вы менеджер, который хочет ставить задачи аналитике и управлять ею. Если вы инвестор, с ней вам будет легче понять потенциал стартапа. Те, кто «пилит» свой стартап, найдут здесь рекомендации, как выбрать подходящие технологии и набрать команду. А начинающим специалистам книга поможет расширить кругозор и начать применять практики, о которых они раньше не задумывались, и это выделит их среди профессионалов такой непростой и изменчивой области. Книга не содержит примеров программного кода, в ней почти нет математики.В формате PDF A4 сохранен издательский макет.

Роман Зыков

Карьера, кадры / Прочая компьютерная литература / Книги по IT

Похожие книги

10 гениев бизнеса
10 гениев бизнеса

Люди, о которых вы прочтете в этой книге, по-разному относились к своему богатству. Одни считали приумножение своих активов чрезвычайно важным, другие, наоборот, рассматривали свои, да и чужие деньги лишь как средство для достижения иных целей. Но общим для них является то, что их имена в той или иной степени становились знаковыми. Так, например, имена Альфреда Нобеля и Павла Третьякова – это символы культурных достижений человечества (Нобелевская премия и Третьяковская галерея). Конрад Хилтон и Генри Форд дали свои имена знаменитым торговым маркам – отельной и автомобильной. Биографии именно таких людей-символов, с их особым отношением к деньгам, власти, прибыли и вообще отношением к жизни мы и постарались включить в эту книгу.

А. Ходоренко

Карьера, кадры / Биографии и Мемуары / О бизнесе популярно / Документальное / Финансы и бизнес