Читаем Роман с Data Science. Как монетизировать большие данные полностью

Рис. 10.2. Статистическая мощность

Каждое распределение представляет плотность вероятности. По сути это две гистограммы с площадью под каждой кривой, равной единице. На графике нулевой гипотезы мы отмечаем две вертикальные линии таким образом, что площадь каждой на хвосте была равна /2. В случае односторонней гипотезы строится только одна линия с площадью. Эта линия делит распределение альтернативной гипотезы на две части – и (1 —), площади под ними как раз и равны соответственно ошибке второго рода и мощности критерия. Из графика наглядно видно, что чем дальше находятся пики (средние) этих распределений, тем выше мощность и ниже ошибка второго рода (неверное принятие нулевой гипотезы). И это очень логично – чем дальше средние распределений находятся друг от друга, тем становится явнее разница между гипотезами, а значит, нам легче отвергнуть H0. С другой стороны, если «уже» распределения, то мощность растет, и нам также легче отвергнуть нулевую гипотезу. Увеличение числа данных в выборке (sample size) способствует «сжиманию» таких распределений.

Именно таким образом работают калькуляторы мощности, которые вычисляют необходимый объем данных для тестов. В калькулятор вводится минимальная детектируемая разность в значениях параметров, уровень и ошибок. На выходе будет объем необходимых данных, которые нужно собрать. Закономерность здесь проста – чем меньшую разницу вы хотите детектировать, тем больше данных для этого нужно.

Альтернативой p-значению является доверительный интервал. Это интервал, внутри которого находится наш измеряемый параметр с определенной степенью точности. Обычно используют 95 %-ную вероятность (= 0.05). Если у нас есть два таких доверительных интервала для тестовой и контрольной группы, то по их пересечению можно понять, есть ли между ними отличие. P-значение и доверительные интервалы – это две стороны одной и той же медали. Интервал удобен для представления данных на графиках. Он часто используется в альтернативных методах оценок А/Б-тестов: байесовской статистике и бутстрэпе.

<p><strong>Статистические критерии для p-значений</strong></p>

Как мы уже узнали, p-значение – универсальная метрика тестирования гипотез. Для ее расчета нужно следующее: нулевая гипотеза, статистический критерий, односторонний или двусторонний тест, данные.

Чтобы определить p-значение, вам необходимо знать распределение выбранной статистики (статистического критерия), считая, что нулевая гипотеза верна. Далее с помощью кумулятивной функции распределения cdf (Cumulative Distribution Function) этой статистики мы можем вычислить p-значение, как проиллюстрировано на рисунке (рис. 10.3):

• Левостронний тест: p-значение = cdf(x).

• Правосторонний тест: p-значение = 1 – cdf(x).

• Двусторонний тест: p-значение = 2 × min(cdf(x), 1 – cdf(x)).

Сейчас проще не изобретать велосипед, а пользоваться готовыми калькуляторами в статистических пакетах или программных библиотеках. Важно только выбрать правильный статистический критерий.

Выбор такого критерия зависит от задачи:

• Z-тест для проверки среднего в нормально распределенной величине.

Рис. 10.3. Левосторонний, правосторонний, двусторонний тесты

• T-тест Стьюдента – то же самое, что и z-тест, но для выборок малого объема (t < 100).

• Хи-квадрат Пирсона для категориальных переменных и всяческих биномиальных тестов. Очень удобен для расчета конверсий, например посетителей в покупателей, где нужен биномиальный тест – купил или нет.

• Тест Стьюдента для двух независимо распределенных выборок очень хорошо подходит для нашей задачи с двумя резервуарами или для сравнения средней суммы покупки.

У таких тестов есть одна проблема – они привязаны к распределению. Например, для тестов Стьюдента и z-теста нужны нормально распределенные данные. Форма таких данных формирует «колокол» на гистограмме. Например, распределение средних чеков покупок не образует такого распределения. Конечно, можно их преобразовать логарифмированием и собрать в форму колокола, но часто это неудобно. Первой альтернативой для ненормально распределенных данных являются непараметрические тесты.

Хотя согласно статистическому словарю STATISTICA [78] – непараметрические методы наиболее приемлемы, когда объем выборок мал. Если данных много (например, > 100), то не имеет смысла использовать непараметрические статистики. Дело в том, что когда выборки становятся очень большими, то выборочные средние подчиняются нормальному закону, даже если исходная переменная не является нормальной или измерена с погрешностью. Непараметрические тесты имеют меньшую статистическую мощность (менее чувствительны), чем их параметрические конкуренты, и если важно обнаружить даже слабые отклонения, следует особенно внимательно выбирать статистику критерия.

В нашей задаче с резервуарами можно применить тест Стьюдента для двух независимых выборок. Второй альтернативой является универсальный инструмент – бутстрэп.

<p><strong>Бутстрэп</strong></p>
Перейти на страницу:

Все книги серии IT для бизнеса

О криптовалюте просто. Биткоин, эфириум, блокчейн, децентрализация, майнинг, ICO & Co
О криптовалюте просто. Биткоин, эфириум, блокчейн, децентрализация, майнинг, ICO & Co

Эта книга – самый быстрый способ войти в мир криптовалют и начать ими пользоваться.Вы хоть раз спрашивали себя, что такое биткоин, криптовалюта или блокчейн? А децентрализация? Как вы думаете, кто выиграл от появления интернета? Люди, которые были подготовлены к нему и стали использовать его в личных или коммерческих целях до того, как подтянулись остальные.Новая технология «блокчейн» дает аналогичную возможность. Она играет сейчас такую же роль, какую играл интернет последние 20 лет. Главный вопрос, который каждый себе задает, это «c чего мне начать?»Джулиан Хосп, соучредитель компании TenX и один из ведущих мировых экспертов по криптовалютам, просто и доступно объясняет сложные термины и дает четкую инструкцию к действию: как пользоваться криптовалютами, соблюдая правила онлайн-безопасности.У Илона Маска уже есть книга Джулиана Хоспа. А у вас?

Джулиан Хосп

Деловая литература / Маркетинг, PR, реклама / Финансы и бизнес
Роман с Data Science. Как монетизировать большие данные
Роман с Data Science. Как монетизировать большие данные

Как выжать все из своих данных? Как принимать решения на основе данных? Как организовать анализ данных (data science) внутри компании? Кого нанять аналитиком? Как довести проекты машинного обучения (machine learning) и искусственного интеллекта до топового уровня? На эти и многие другие вопросы Роман Зыков знает ответ, потому что занимается анализом данных почти двадцать лет. В послужном списке Романа – создание с нуля собственной компании с офисами в Европе и Южной Америке, ставшей лидером по применению искусственного интеллекта (AI) на российском рынке. Кроме того, автор книги создал с нуля аналитику в Ozon.ru.Эта книга предназначена для думающих читателей, которые хотят попробовать свои силы в области анализа данных и создавать сервисы на их основе. Она будет вам полезна, если вы менеджер, который хочет ставить задачи аналитике и управлять ею. Если вы инвестор, с ней вам будет легче понять потенциал стартапа. Те, кто «пилит» свой стартап, найдут здесь рекомендации, как выбрать подходящие технологии и набрать команду. А начинающим специалистам книга поможет расширить кругозор и начать применять практики, о которых они раньше не задумывались, и это выделит их среди профессионалов такой непростой и изменчивой области. Книга не содержит примеров программного кода, в ней почти нет математики.В формате PDF A4 сохранен издательский макет.

Роман Зыков

Карьера, кадры / Прочая компьютерная литература / Книги по IT

Похожие книги

10 гениев бизнеса
10 гениев бизнеса

Люди, о которых вы прочтете в этой книге, по-разному относились к своему богатству. Одни считали приумножение своих активов чрезвычайно важным, другие, наоборот, рассматривали свои, да и чужие деньги лишь как средство для достижения иных целей. Но общим для них является то, что их имена в той или иной степени становились знаковыми. Так, например, имена Альфреда Нобеля и Павла Третьякова – это символы культурных достижений человечества (Нобелевская премия и Третьяковская галерея). Конрад Хилтон и Генри Форд дали свои имена знаменитым торговым маркам – отельной и автомобильной. Биографии именно таких людей-символов, с их особым отношением к деньгам, власти, прибыли и вообще отношением к жизни мы и постарались включить в эту книгу.

А. Ходоренко

Карьера, кадры / Биографии и Мемуары / О бизнесе популярно / Документальное / Финансы и бизнес