Читаем Роман с Data Science. Как монетизировать большие данные полностью

Этот процесс не так прост, как кажется. Часто приходится в итеративном формате договариваться обо всех нюансах и ограничениях, в том числе с разработчиками. Происходит своеобразный торг, но он стоит того. Заранее хорошо продуманный результат не будет идеальным на 100 %, но если менеджмент получит ответы на 80 % своих вопросов в течение нескольких дней с момента запуска «фичи» – это успех. Ничто не играет против нас так, как время! И лучше его потратить до запуска, а не после, теряя деньги на неэффективном продукте.

<p><strong>Доступ к данным</strong></p>

Теперь коснемся доступа к данным внутри компании. Кто может получить его?

Отвлечемся на компанию Netflix, один из крупнейших поставщиков сериалов (мой любимый – «Карточный домик»). У компании очень интересная корпоративная культура [32]. Один из ее принципов звучит так: «Share information openly, broadly, and deliberately» (обмениваемся информацией открыто, широко и сознательно).

У этого правила, правда, есть строгое исключение: они нетерпимо относятся к торговле инсайдерской информацией, а также платежной информацией клиентов, доступ к которой ограничен. Как этот принцип можно применить на практике? Не ограничивать своим сотрудникам доступ к информации, но ограничить доступ к персональным данным клиентов. Я иду обычно еще дальше, стараюсь максимально убрать барьер между сотрудниками-неаналитиками и данными. Просто я считаю, что должна быть не только свобода доступа к данным, но и минимум посредников между «спрашивающим» и данными. Это важно, потому что против нас играет время. Часто сами запросы данных выглядят довольно простыми, их можно сделать самостоятельно. «Дайте мне выгрузку таких-то данных» – не аналитическая задача: менеджер знает, что ему конкретно нужно, пусть сам получит это через несложный интерфейс. Для этого нужно обучить команду самостоятельно работать с данными. Посредник только создаст задержку, но если кто-то не хочет или не может действовать самостоятельно, пусть использует посредников. Этим вы убьете сразу двух зайцев – ваши аналитики не будут демотивированы примитивным скучным трудом по выгрузке данных, а ваши менеджеры смогут получать данные почти мгновенно, и значит, не будут терять драйв.

Конечно, все персональные данные клиентов должны быть обезличены. Это можно сделать, шифруя их личную информацию. Полностью лучше ее не удалять, тогда можно будет решать часть вопросов клиентской поддержки с помощью вашей системы анализа данных.

Я всегда стараюсь использовать этот подход во всех компаниях, где бы ни работал. Вы даже не представляете, насколько будут вам благодарны пользователи ваших аналитических систем, когда смогут получать данные самостоятельно. Самые умные и деятельные сотрудники являются самыми активными потребителями информации для принятия решений, и создавать им препятствия – это преступление.

<p><strong>Качество данных</strong></p>

Данные бывают грязными, очень грязными. Если вам встретятся «чистые» данные, то это, скорее всего, неправда. Но бывает, что в жизни сказочно везет. Аналитики данных тратят львиную долю своего времени на очистку данных от выбросов и прочих артефактов, которые могут помешать получить правильное решение. Мы все работаем в условиях неопределенности, и увеличивать ошибку из-за грязи в данных совсем не хочется.

Для меня качественные данные – это данные, которые могут быть использованы для решения конкретной задачи без каких-либо предварительных очисток. Я намеренно написал «конкретной задачи», потому что считаю: разные задачи требуют разной степени точности, так как последствия и уровень риска для компании разные. И мы движемся по лезвию бритвы, стараясь решить задачу как можно быстрее наименьшими усилиями, балансируем между трудоемкостью и ценой ошибки. Если это бухгалтерская задача, то она требует очень высокой степени точности, так как санкции налоговой службы могут быть весьма болезненными. Если управленческая и последствия не столь значимы, то некоторой степенью точности можно пренебречь. Решение здесь за руководителем аналитики.

Основные причины плохого качества данных:

• человеческий фактор;

• техническая потеря данных;

• ошибка интеграции и выгрузки данных в хранилище;

• отставание в обновлении данных в хранилище.

Рассмотрим более подробно.

Часть данных приходит от людей напрямую: по разным каналам связи они отдают нам цифры. Для простоты будем считать, что периодически они заполняют какую-то форму и отправляют нам. Из школьного курса физики мы знаем про погрешность отсчета по шкале – при любых измерениях принимается погрешность отсчета, равная половине цены деления. Для линейки с миллиметровой шкалой это полмиллиметра. То есть просто из-за того, что мы можем посмотреть не под тем углом, чуть сдвинуть линейку, – мы уже ошибаемся. Чего же ждать от людей, которые используют инструменты посложнее линейки?

Перейти на страницу:

Все книги серии IT для бизнеса

О криптовалюте просто. Биткоин, эфириум, блокчейн, децентрализация, майнинг, ICO & Co
О криптовалюте просто. Биткоин, эфириум, блокчейн, децентрализация, майнинг, ICO & Co

Эта книга – самый быстрый способ войти в мир криптовалют и начать ими пользоваться.Вы хоть раз спрашивали себя, что такое биткоин, криптовалюта или блокчейн? А децентрализация? Как вы думаете, кто выиграл от появления интернета? Люди, которые были подготовлены к нему и стали использовать его в личных или коммерческих целях до того, как подтянулись остальные.Новая технология «блокчейн» дает аналогичную возможность. Она играет сейчас такую же роль, какую играл интернет последние 20 лет. Главный вопрос, который каждый себе задает, это «c чего мне начать?»Джулиан Хосп, соучредитель компании TenX и один из ведущих мировых экспертов по криптовалютам, просто и доступно объясняет сложные термины и дает четкую инструкцию к действию: как пользоваться криптовалютами, соблюдая правила онлайн-безопасности.У Илона Маска уже есть книга Джулиана Хоспа. А у вас?

Джулиан Хосп

Деловая литература / Маркетинг, PR, реклама / Финансы и бизнес
Роман с Data Science. Как монетизировать большие данные
Роман с Data Science. Как монетизировать большие данные

Как выжать все из своих данных? Как принимать решения на основе данных? Как организовать анализ данных (data science) внутри компании? Кого нанять аналитиком? Как довести проекты машинного обучения (machine learning) и искусственного интеллекта до топового уровня? На эти и многие другие вопросы Роман Зыков знает ответ, потому что занимается анализом данных почти двадцать лет. В послужном списке Романа – создание с нуля собственной компании с офисами в Европе и Южной Америке, ставшей лидером по применению искусственного интеллекта (AI) на российском рынке. Кроме того, автор книги создал с нуля аналитику в Ozon.ru.Эта книга предназначена для думающих читателей, которые хотят попробовать свои силы в области анализа данных и создавать сервисы на их основе. Она будет вам полезна, если вы менеджер, который хочет ставить задачи аналитике и управлять ею. Если вы инвестор, с ней вам будет легче понять потенциал стартапа. Те, кто «пилит» свой стартап, найдут здесь рекомендации, как выбрать подходящие технологии и набрать команду. А начинающим специалистам книга поможет расширить кругозор и начать применять практики, о которых они раньше не задумывались, и это выделит их среди профессионалов такой непростой и изменчивой области. Книга не содержит примеров программного кода, в ней почти нет математики.В формате PDF A4 сохранен издательский макет.

Роман Зыков

Карьера, кадры / Прочая компьютерная литература / Книги по IT

Похожие книги

10 гениев бизнеса
10 гениев бизнеса

Люди, о которых вы прочтете в этой книге, по-разному относились к своему богатству. Одни считали приумножение своих активов чрезвычайно важным, другие, наоборот, рассматривали свои, да и чужие деньги лишь как средство для достижения иных целей. Но общим для них является то, что их имена в той или иной степени становились знаковыми. Так, например, имена Альфреда Нобеля и Павла Третьякова – это символы культурных достижений человечества (Нобелевская премия и Третьяковская галерея). Конрад Хилтон и Генри Форд дали свои имена знаменитым торговым маркам – отельной и автомобильной. Биографии именно таких людей-символов, с их особым отношением к деньгам, власти, прибыли и вообще отношением к жизни мы и постарались включить в эту книгу.

А. Ходоренко

Карьера, кадры / Биографии и Мемуары / О бизнесе популярно / Документальное / Финансы и бизнес