Читаем Роман с Data Science. Как монетизировать большие данные полностью

«Я еще не встречал компаний за свою практику (а это более 10 компаний, в которых работал сам, и примерно столько же, с которыми хорошо знаком изнутри), кроме нашей, у которых в бэклоге были бы задачи на удаление функционала, хотя, наверное, такие существуют».

Я тоже не встречал. Видел «болота» программных проектов, где старье мешает создавать новое. Суть технического долга – все, что вы сделали ранее, нужно обслуживать. Это как с ТО автомобиля – его нужно делать регулярно, иначе машина сломается в самый неожиданный момент. Программный код, в который давно не вносились изменения или обновления, – плохой код. Обычно он уже работает по принципу «работает – не трогай». Четыре года назад я общался с разработчиком Bing. Он рассказал, что в архитектуре этого поискового движка есть скомпилированная библиотека, код которой потерян. И никто не знает, как это восстановить. Чем дольше это тянется, тем хуже будут последствия.

Как аналитики Retail Rocket обслуживают технический долг:

• После каждого проекта тестирования гипотез мы удаляем программный код этой гипотезы везде, где только можно. Это избавляет нас от ненужного и неработающего хлама.

• Если происходит обновление каких-либо версий библиотек – мы делаем это с некоторым запозданием, но делаем регулярно. Например, платформу Spark мы апгрейдим регулярно, начиная с версии 1.0.0.

• Если какие-либо компоненты обработки данных работают медленно – ставим задачу и занимаемся ею.

• Если есть какие-то потенциально опасные риски – например, переполнение дисков кластера, тоже ставится соответствующая задача.

Работа с техническим долгом – это путь к качеству. Меня убедила в этом работа в проекте Retail Rocket. С инженерной точки зрения проект сделан как в «лучших домах Калифорнии».

<p>Глава 5</p><p>Данные</p>

Данные – представление фактов, понятий или инструкций в форме, приемлемой для общения, интерпретации или обработки человеком или с помощью автоматических средств.

Википедия

Прежде чем мы перейдем к собственно анализу данных, считаю необходимым рассмотреть предмет изучения. Цитата выше – это определение данных, которое дает Википедия. Оно очень сухое, но емкое. В моей книге я намеренно сузил это определение: под данными будут пониматься цифровые данные, которые могут быть прочитаны и обработаны ПО.

Данные бывают разными – это могут быть результаты медицинских анализов, фотографии, географические карты, описание и характеристики товаров, история посещения страниц сайта пользователями, списки клиентов и многое другое. В нашей области анализа у данных одна цель – помощь в принятии решений человеком и даже создание систем такой помощи.

• Медицинские анализы – помощь в постановке диагноза, принятие решений о выводе лекарства на рынок.

• Фотографии – поиск предметов, распознавание лиц.

• Товары – закупки нужных товаров на склад.

• История посещений сайта – рекомендательная система интересных страниц.

• Список клиентов – разбить их на группы, чтобы предложить разные скидки.

• Географические карты – навигация с учетом автомобильных пробок.

<p><strong>Как собираются данные</strong></p>

Проведите несложный эксперимент: откройте браузер, откройте какой-нибудь новостной сайт, откройте инструменты разработчика, вкладку «Сетевые запросы» и обновите страницу. Вы увидите все сетевые взаимодействия вашего браузера. Количество таких сетевых запросов на одной странице может легко перевалить за 1000. Большая их часть – это скачивание картинок и скриптов, обеспечивающих визуализацию страницы у вас на экране. Но есть также запросы от трекеров и рекламных сетей, у них задача собрать ваш «профиль клиента» на одном или нескольких сайтах. Также все ваши запросы провайдер запишет на свои сервера, куда имеют доступ спецслужбы.

Второй пример – передвижение автомобиля по дорогам. Не секрет, что сервисы навигации активно используют данные нашего передвижения для построения своих карт пробок. Данные для этого они получают из своего приложения, а также с датчиков, установленных на дорогах.

Третий пример – мобильная геолокация. Наши передвижения, точнее, перемещения наших телефонов, аккуратно записываются сотовыми операторами в хранилища. На основе этих данных создаются разные сервисы. Один из них – определение лучшего места для открытия новой торговой точки.

<p><strong>Big Data</strong></p>

Очень хайповый термин, который сейчас звучит из каждого утюга. Мне посчастливилось поработать в этой теме последние 8 лет и накопить достаточно большую экспертизу. Попробую дать собственное определение: большие данные (Big Data) – это такой объем данных, который невозможно обработать в требуемое время на одной машине (сервере).

Перейти на страницу:

Все книги серии IT для бизнеса

О криптовалюте просто. Биткоин, эфириум, блокчейн, децентрализация, майнинг, ICO & Co
О криптовалюте просто. Биткоин, эфириум, блокчейн, децентрализация, майнинг, ICO & Co

Эта книга – самый быстрый способ войти в мир криптовалют и начать ими пользоваться.Вы хоть раз спрашивали себя, что такое биткоин, криптовалюта или блокчейн? А децентрализация? Как вы думаете, кто выиграл от появления интернета? Люди, которые были подготовлены к нему и стали использовать его в личных или коммерческих целях до того, как подтянулись остальные.Новая технология «блокчейн» дает аналогичную возможность. Она играет сейчас такую же роль, какую играл интернет последние 20 лет. Главный вопрос, который каждый себе задает, это «c чего мне начать?»Джулиан Хосп, соучредитель компании TenX и один из ведущих мировых экспертов по криптовалютам, просто и доступно объясняет сложные термины и дает четкую инструкцию к действию: как пользоваться криптовалютами, соблюдая правила онлайн-безопасности.У Илона Маска уже есть книга Джулиана Хоспа. А у вас?

Джулиан Хосп

Деловая литература / Маркетинг, PR, реклама / Финансы и бизнес
Роман с Data Science. Как монетизировать большие данные
Роман с Data Science. Как монетизировать большие данные

Как выжать все из своих данных? Как принимать решения на основе данных? Как организовать анализ данных (data science) внутри компании? Кого нанять аналитиком? Как довести проекты машинного обучения (machine learning) и искусственного интеллекта до топового уровня? На эти и многие другие вопросы Роман Зыков знает ответ, потому что занимается анализом данных почти двадцать лет. В послужном списке Романа – создание с нуля собственной компании с офисами в Европе и Южной Америке, ставшей лидером по применению искусственного интеллекта (AI) на российском рынке. Кроме того, автор книги создал с нуля аналитику в Ozon.ru.Эта книга предназначена для думающих читателей, которые хотят попробовать свои силы в области анализа данных и создавать сервисы на их основе. Она будет вам полезна, если вы менеджер, который хочет ставить задачи аналитике и управлять ею. Если вы инвестор, с ней вам будет легче понять потенциал стартапа. Те, кто «пилит» свой стартап, найдут здесь рекомендации, как выбрать подходящие технологии и набрать команду. А начинающим специалистам книга поможет расширить кругозор и начать применять практики, о которых они раньше не задумывались, и это выделит их среди профессионалов такой непростой и изменчивой области. Книга не содержит примеров программного кода, в ней почти нет математики.В формате PDF A4 сохранен издательский макет.

Роман Зыков

Карьера, кадры / Прочая компьютерная литература / Книги по IT

Похожие книги

10 гениев бизнеса
10 гениев бизнеса

Люди, о которых вы прочтете в этой книге, по-разному относились к своему богатству. Одни считали приумножение своих активов чрезвычайно важным, другие, наоборот, рассматривали свои, да и чужие деньги лишь как средство для достижения иных целей. Но общим для них является то, что их имена в той или иной степени становились знаковыми. Так, например, имена Альфреда Нобеля и Павла Третьякова – это символы культурных достижений человечества (Нобелевская премия и Третьяковская галерея). Конрад Хилтон и Генри Форд дали свои имена знаменитым торговым маркам – отельной и автомобильной. Биографии именно таких людей-символов, с их особым отношением к деньгам, власти, прибыли и вообще отношением к жизни мы и постарались включить в эту книгу.

А. Ходоренко

Карьера, кадры / Биографии и Мемуары / О бизнесе популярно / Документальное / Финансы и бизнес