Читаем Роман с Data Science. Как монетизировать большие данные полностью

Скептицизм к выводам анализа данных – очень полезная вещь. Он заключается в том, чтобы подвергнуть результат сомнению и проверке. Например, попробовать получить тот же самый вывод альтернативным способом или через другой источник данных – если результаты совпадут, получите плюс один к уверенности, что все правильно. Другой способ – тестировать данные на каждом шаге, проверять их распределение и соответствие здравому смыслу. Мне лично это помогло бы не допустить очень многих ошибок, которые я делал, когда хотелось побыстрее получить нужный результат.

Выбросы – это данные, которые не укладываются в нашу картину мира, а точнее в распределение, которое мы обычно наблюдаем: кто-то совершил очень крупную покупку в магазине, поступили странные данные от одного из избирательных участков, зачислена аномально большая сумма на счет. Все это выбросы, но удалять их из анализа просто так нельзя. Часто удаление выброса может привести к изменению выводов и решений на полностью противоположные. Считаю, что работа с выбросами данных является искусством. Более подробно это рассмотрим в главе 10.

Теперь поговорим про данные, которые невозможно восстановить повторным чтением из источника. Выше я писал, почему это может произойти, – в системе существует ошибка интеграции или разработчики не сделали сбор и отправку необходимых данных. Таким источникам данных необходимо уделять самое пристальное внимание, например, написать специальные тесты, чтобы как можно раньше заметить проблему. А вот с невнимательностью разработчиков лучше работать на уровне управления проектом внедрения или внося изменения в их культуру разработки. Об этом я писал в разделе «Много данных не бывает».

<p><strong>Типы данных</strong></p>

Вот основные типы данных, с которыми приходится работать:

1. Состояние на определенный момент времени.

2. Лог изменений данных.

3. Справочники.

Разберем каждый тип отдельно на примере с банковским счетом. Итак, у вас есть счет, туда приходит зарплата, скажем, первого числа каждого месяца. Вы пользуетесь картой, привязанной к этому счету, для оплаты покупок. Так вот, остаток средств на вашем счете прямо сейчас – это состояние счета на определенный момент времени. Движение средств по счету – это так называемый лог изменений состояния счета (лог изменения данных). А справочником могут выступать категории покупок, которые банк проставляет в онлайн-приложении для каждой покупки, например: продукты, авиабилеты, кинотеатр, ресторан. А теперь подробнее о каждом типе данных.

Состояние на определенный момент времени. Все мы имеем дело с разными объектами, как физическими, так и виртуальными. Эти объекты имеют свойства или атрибуты, которые могут изменяться во времени. Например, координаты вашего местонахождения на карте, остаток средств на счете, цвет волос, который может измениться после посещения парикмахерской, рост и вес, которые меняются со временем, статус заказа в онлайн-магазине, ваша должность на работе. Это все объекты с каким-то свойством. Чтобы отследить изменения этих свойств, нужно их периодически запоминать, например, сделав «слепок» (snapshot) всех счетов клиентов в банке (табл. 5.1). Имея на руках два таких слепка, можно легко посчитать изменения. Но есть альтернативный способ отслеживать изменения.

Таблица 5.1. Пример «слепка» счетов клиентов

Если запоминать, в какой момент времени какое свойство/атрибут объекта менялось, включая информацию о его новом значении, то мы получим так называемый лог изменений данных. Когда речь идет о таком типе данных, я обычно представляю себе таблицу (табл. 5.2), непременными атрибутами которой являются следующие столбцы:

• Дата и время изменения свойства – точность может быть очень высокой, вплоть до наносекунд.

• Указание на объект, который изменился. Например, номер банковского счета.

• Новое значение свойства или его изменение. Например, в этом поле можно сохранить новое значение суммы на счете, но обычно там находится сумма списания или зачисления на счет со знаком «плюс» или «минус».

Иногда может быть еще несколько необязательных полей: название атрибута, если их несколько, например вес или рост; старое значение атрибута, это может потребоваться для проверки целостности данных (табл. 5.2).

Таблица 5.2. Изменения счетов клиентов

Что касается справочников, то они, как правило, содержат информацию, которая не изменяется часто и позволяет «расшифровать» или обобщить данные. Например, в таблице лога изменений или состояния может храниться не имя клиента, а его номер или идентификатор (ID), тогда в справочнике будет храниться соответствие этого идентификатора и имени клиента. Обобщение может быть нужно, чтобы агрегировать данные, например, по типу клиента – юридическое или физическое лицо. Для магазина это может быть категория товаров или даже дерево категорий, оформленное в специальной структуре. Сам справочник тоже может изменяться, и его тоже возможно представить и в виде таблицы состояния, и в виде лога изменений, если такое потребуется.

Перейти на страницу:

Все книги серии IT для бизнеса

О криптовалюте просто. Биткоин, эфириум, блокчейн, децентрализация, майнинг, ICO & Co
О криптовалюте просто. Биткоин, эфириум, блокчейн, децентрализация, майнинг, ICO & Co

Эта книга – самый быстрый способ войти в мир криптовалют и начать ими пользоваться.Вы хоть раз спрашивали себя, что такое биткоин, криптовалюта или блокчейн? А децентрализация? Как вы думаете, кто выиграл от появления интернета? Люди, которые были подготовлены к нему и стали использовать его в личных или коммерческих целях до того, как подтянулись остальные.Новая технология «блокчейн» дает аналогичную возможность. Она играет сейчас такую же роль, какую играл интернет последние 20 лет. Главный вопрос, который каждый себе задает, это «c чего мне начать?»Джулиан Хосп, соучредитель компании TenX и один из ведущих мировых экспертов по криптовалютам, просто и доступно объясняет сложные термины и дает четкую инструкцию к действию: как пользоваться криптовалютами, соблюдая правила онлайн-безопасности.У Илона Маска уже есть книга Джулиана Хоспа. А у вас?

Джулиан Хосп

Деловая литература / Маркетинг, PR, реклама / Финансы и бизнес
Роман с Data Science. Как монетизировать большие данные
Роман с Data Science. Как монетизировать большие данные

Как выжать все из своих данных? Как принимать решения на основе данных? Как организовать анализ данных (data science) внутри компании? Кого нанять аналитиком? Как довести проекты машинного обучения (machine learning) и искусственного интеллекта до топового уровня? На эти и многие другие вопросы Роман Зыков знает ответ, потому что занимается анализом данных почти двадцать лет. В послужном списке Романа – создание с нуля собственной компании с офисами в Европе и Южной Америке, ставшей лидером по применению искусственного интеллекта (AI) на российском рынке. Кроме того, автор книги создал с нуля аналитику в Ozon.ru.Эта книга предназначена для думающих читателей, которые хотят попробовать свои силы в области анализа данных и создавать сервисы на их основе. Она будет вам полезна, если вы менеджер, который хочет ставить задачи аналитике и управлять ею. Если вы инвестор, с ней вам будет легче понять потенциал стартапа. Те, кто «пилит» свой стартап, найдут здесь рекомендации, как выбрать подходящие технологии и набрать команду. А начинающим специалистам книга поможет расширить кругозор и начать применять практики, о которых они раньше не задумывались, и это выделит их среди профессионалов такой непростой и изменчивой области. Книга не содержит примеров программного кода, в ней почти нет математики.В формате PDF A4 сохранен издательский макет.

Роман Зыков

Карьера, кадры / Прочая компьютерная литература / Книги по IT

Похожие книги

10 гениев бизнеса
10 гениев бизнеса

Люди, о которых вы прочтете в этой книге, по-разному относились к своему богатству. Одни считали приумножение своих активов чрезвычайно важным, другие, наоборот, рассматривали свои, да и чужие деньги лишь как средство для достижения иных целей. Но общим для них является то, что их имена в той или иной степени становились знаковыми. Так, например, имена Альфреда Нобеля и Павла Третьякова – это символы культурных достижений человечества (Нобелевская премия и Третьяковская галерея). Конрад Хилтон и Генри Форд дали свои имена знаменитым торговым маркам – отельной и автомобильной. Биографии именно таких людей-символов, с их особым отношением к деньгам, власти, прибыли и вообще отношением к жизни мы и постарались включить в эту книгу.

А. Ходоренко

Карьера, кадры / Биографии и Мемуары / О бизнесе популярно / Документальное / Финансы и бизнес