Читаем Роман с Data Science. Как монетизировать большие данные полностью

Датасет – это набор данных, чаще всего в виде таблицы, который был выгружен из хранилища (например, через SQL) или получен иным способом. Таблица состоит из столбцов и строк, обычно именуемых как записи. В машинном обучении сами столбцы бывают независимыми переменными (independent variables), или предикторами (predictors), или чаще фичами (features), и зависимыми переменными (dependent variables, outcome). Такое разделение вы встретите в литературе. Задачей машинного обучения является обучение модели, которая, используя независимые переменные (фичи), сможет правильно предсказать значение зависимой переменной (как правило, в датасете она одна).

Основные два вида переменных – категориальные и количественные. Категориальная (categorical) переменная содержит текст или цифровое кодирование «категории». В свою очередь, она может быть:

• Бинарной (binary) – может принимать только два значения (примеры: да/нет, 0/1).

• Номинальной (nominal) – может принимать больше двух значений (пример: да/нет/не знаю).

• Порядковой (ordinal) – когда порядок имеет значение (пример, ранг спортсмена, номер строки в поисковой выдаче).

Количественная (quantitative) переменная может быть:

• Дискретной (discrete) – значение подсчитано счетом, например, число человек в комнате.

• Непрерывной (continuous) – любое значение из интервала, например, вес коробки, цена товара.

Рассмотрим пример. Есть таблица с ценами на квартиры (зависимая переменная), одна строка (запись) на квартиру, у каждой квартиры есть набор атрибутов (независимы) со следующими столбцами:

• Цена квартиры – непрерывная, зависимая.

• Площадь квартиры – непрерывная.

• Число комнат – дискретная (1, 2, 3…).

• Санузел совмещен (да/нет) – бинарная.

• Номер этажа – порядковая или номинальная (зависит от задачи).

• Расстояние до центра – непрерывная.

<p><strong>Описательная статистика</strong></p>

Самое первое действие после выгрузки данных из хранилища – сделать разведочный анализ (exploratory data analysis), куда входит описательная статистика (descriptive statistics) и визуализация данных, возможно, очистка данных через удаление выбросов (outliers).

В описательную статистику обычно входят различные статистики по каждой из переменных во входном датасете:

• Количество непустых значений (non missing values).

• Количество уникальных значений.

• Минимум/максимум.

• Среднее значение.

• Медиана.

• Стандартное отклонение.

• Перцентили (percentiles) – 25 %, 50 % (медиана), 75 %, 95 %.

Не для всех типов переменных их можно посчитать – например, среднее значение можно рассчитать только для количественных переменных. В статистистических пакетах и библиотеках статистического анализа уже есть готовые функции, которые считают описательные статистики. Например, в библиотеке pandas для Python есть функция describe, которая сразу выведет несколько статистик для одной или всех переменных датасета:

s = pd.Series([4–1, 2, 3])

s.describe()

count 3.0

mean 2.0

std 1.0

min 1.0

25 % 1.5

50 % 2.0

75 % 2.5

max 3.0

Хотя эта книга не является учебником по статистике, дам вам несколько полезных советов. Часто в теории подразумевается, что мы работаем с нормально распределенными данными, гистограмма которых выглядит как колокол (рис. 4.1).

Очень рекомендую проверять это предположение хотя бы на глаз. Медиана – значение, которое делит выборку пополам. Например, если 25-й и 75-й перцентиль находятся на разном расстоянии от медианы, это уже говорит о смещенном распределении. Еще один фактор – сильное различие между средним и медианой; в нормальном распределении они практически совпадают. Вы будете часто иметь дело с экспоненциальным распределением, если анализируете поведение клиентов, – например, в Ozon.ru время между последовательными заказами клиента будет иметь экспоненциальное распределение.

Рис. 4.1. Нормальное распределение и Шесть Сигм

Среднее и медиана для него отличаются в разы. Поэтому правильная цифра – медиана, значение, которое делит выборку пополам. В примере с Ozon.ru это время, в течение которого 50 % пользователей делают следующий заказ после первого. Медиана также более устойчива к выбросам в данных. Если же вы хотите работать со средними, например, из-за ограничений статистического пакета, да и технически среднее считается быстрее, чем медиана, то в случае экспоненциального распределения можно его обработать натуральным логарифмом. Чтобы вернуться в исходную шкалу данных, нужно полученное среднее обработать обычной экспонентой.

Перцентиль – значение, которое заданная случайная величина не превышает с фиксированной вероятностью. Например, фраза «25-й перцентиль цены товаров равен 150 рублям» означает, что 25 % товаров имеют цену меньше или равную 150 рублям, остальные 75 % товаров дороже 150 рублей.

Перейти на страницу:

Все книги серии IT для бизнеса

О криптовалюте просто. Биткоин, эфириум, блокчейн, децентрализация, майнинг, ICO & Co
О криптовалюте просто. Биткоин, эфириум, блокчейн, децентрализация, майнинг, ICO & Co

Эта книга – самый быстрый способ войти в мир криптовалют и начать ими пользоваться.Вы хоть раз спрашивали себя, что такое биткоин, криптовалюта или блокчейн? А децентрализация? Как вы думаете, кто выиграл от появления интернета? Люди, которые были подготовлены к нему и стали использовать его в личных или коммерческих целях до того, как подтянулись остальные.Новая технология «блокчейн» дает аналогичную возможность. Она играет сейчас такую же роль, какую играл интернет последние 20 лет. Главный вопрос, который каждый себе задает, это «c чего мне начать?»Джулиан Хосп, соучредитель компании TenX и один из ведущих мировых экспертов по криптовалютам, просто и доступно объясняет сложные термины и дает четкую инструкцию к действию: как пользоваться криптовалютами, соблюдая правила онлайн-безопасности.У Илона Маска уже есть книга Джулиана Хоспа. А у вас?

Джулиан Хосп

Деловая литература / Маркетинг, PR, реклама / Финансы и бизнес
Роман с Data Science. Как монетизировать большие данные
Роман с Data Science. Как монетизировать большие данные

Как выжать все из своих данных? Как принимать решения на основе данных? Как организовать анализ данных (data science) внутри компании? Кого нанять аналитиком? Как довести проекты машинного обучения (machine learning) и искусственного интеллекта до топового уровня? На эти и многие другие вопросы Роман Зыков знает ответ, потому что занимается анализом данных почти двадцать лет. В послужном списке Романа – создание с нуля собственной компании с офисами в Европе и Южной Америке, ставшей лидером по применению искусственного интеллекта (AI) на российском рынке. Кроме того, автор книги создал с нуля аналитику в Ozon.ru.Эта книга предназначена для думающих читателей, которые хотят попробовать свои силы в области анализа данных и создавать сервисы на их основе. Она будет вам полезна, если вы менеджер, который хочет ставить задачи аналитике и управлять ею. Если вы инвестор, с ней вам будет легче понять потенциал стартапа. Те, кто «пилит» свой стартап, найдут здесь рекомендации, как выбрать подходящие технологии и набрать команду. А начинающим специалистам книга поможет расширить кругозор и начать применять практики, о которых они раньше не задумывались, и это выделит их среди профессионалов такой непростой и изменчивой области. Книга не содержит примеров программного кода, в ней почти нет математики.В формате PDF A4 сохранен издательский макет.

Роман Зыков

Карьера, кадры / Прочая компьютерная литература / Книги по IT

Похожие книги

10 гениев бизнеса
10 гениев бизнеса

Люди, о которых вы прочтете в этой книге, по-разному относились к своему богатству. Одни считали приумножение своих активов чрезвычайно важным, другие, наоборот, рассматривали свои, да и чужие деньги лишь как средство для достижения иных целей. Но общим для них является то, что их имена в той или иной степени становились знаковыми. Так, например, имена Альфреда Нобеля и Павла Третьякова – это символы культурных достижений человечества (Нобелевская премия и Третьяковская галерея). Конрад Хилтон и Генри Форд дали свои имена знаменитым торговым маркам – отельной и автомобильной. Биографии именно таких людей-символов, с их особым отношением к деньгам, власти, прибыли и вообще отношением к жизни мы и постарались включить в эту книгу.

А. Ходоренко

Карьера, кадры / Биографии и Мемуары / О бизнесе популярно / Документальное / Финансы и бизнес