Читаем Роман с Data Science. Как монетизировать большие данные полностью

Например, заставлять пользователей вашей системы учить сложные в освоении языки программирования для доступа к данным – плохая идея. Для пользователей это вспомогательный инструмент, и много времени на его изучение они тратить не захотят.

Специалисты на рынке – моя головная боль. Scala – очень редкий язык, довольно непростой в изучении. Специалистов на рынке очень мало, а имеющиеся стоят дорого. Вот на Python работают очень многие. Хотя за одного Scala-разработчика я бы дал трех на Python. Здесь мы приняли сознательное решение: качество нашей работы для нас важнее, поэтому выбрали Scala. Нанимать готовых Scala-людей почти не получалось, поэтому мы сделали свой курс молодого бойца [19], когда новичок в течение полугода обучается программировать на нем.

<p><strong>Поговорим об аутсорсе</strong></p>

Обсудим возможность привлечения внешнего подрядчика для создания аналитической системы. Ему на откуп можно отдать разные аспекты:

• создание и поддержка технической части системы;

• аналитическая часть;

• выделенные задачи.

Когда требуется сократить время развертывания технической части проекта и получить качественный результат – нужен хороший подрядчик. Но попробуй его еще найди! Мало того что редкий подрядчик достаточно глубоко знает предмет – ситуация часто усугубляется тем, что заказчик не знает, чего хочет.

В одной из компаний, где я работал, была собрана команда для реализации проекта. Проект не аналитический, в теории он выглядел замечательно. К тому же командой руководил человек, который преподавал проектирование таких систем чуть ли не в топовом университете. Для технической реализации были выбраны самые «современные» технологии. В итоге три или четыре разработчика писали эту систему целый год. В попытке запустить ее потратили целые сутки… Не завелось, и всю систему выбросили на свалку. То же самое может случиться и с аналитикой. Теория очень сильно отличается от практики, тем более в нашем быстро меняющемся мире.

Риск уменьшится, если привлечь очень опытного аналитика, который не раз лично реализовывал подобные проекты. На вашем проекте он будет выступать в качестве независимого советника или даже арбитра. Это нужно, чтобы, с одной стороны, «приземлить» заказчика, с другой – ограничить подрядчика. Я считаю, что проект на старте лучше сильно урезать по «хотелкам», чтобы получить на выходе работающую версию как можно быстрее. На то есть несколько причин. Во-первых, после того как вы, заказчик, вживую поработаете с ней, вам гораздо легче будет сформулировать, что вы действительно хотите. Это тяжело делать абстрактно на бумаге, конструируя сферического коня в вакууме. Вторая причина – драйв, лично для меня это очень важно. Когда время течет медленно, у команды, да и у заказчиков, постепенно угасает интерес. И на выходе мы уже получаем вымученный проект, которым уже не так сильно хочется заниматься.

Если нет возможности найти советника – попытайтесь хоть немного разобраться в вопросе самостоятельно, почитайте книгу, посмотрите видеозаписи конференций. Иначе велика вероятность, что проект просто не взлетит. А если и взлетит, то будет потрачено много времени и денег.

Хорошо, если можно отдать на аутсорс технологическую часть, но можно ли это сделать с аналитикой? Общий ответ – нет. Сторонние аналитики никогда не будут обладать всей полнотой бизнес-контекста. С другой стороны, аутсорс аналитики какого-то направления вполне возможен. Например, рекламного.

Еще один вариант аутсорса – отдать какую-то часть проекта целиком: вы отдаете данные, а на выходе получаете готовый продукт. Пример такого сотрудничества – компания Retail Rocket. Начали мы бизнес с товарных рекомендаций. Интернет-магазины отдавали нам данные и товарную базу, на выходе они получали готовые рекомендации. Лично у меня идея такого бизнеса зародилась во время работы в компании Wikimart.ru. Я сделал рекомендации для сайта компании и подумал: почему бы не запустить тиражируемое решение. Это бы сняло необходимость интернет-магазину нанимать инженеров машинного обучения и изобретать велосипед. Результат получался гораздо быстрее, буквально за неделю. Среднее качество рекомендаций нашего сервиса гораздо лучше внутренней разработки. Если бы меня наняли сейчас в интернет-магазин, то, скорее всего, я бы привлек внешний сервис рекомендаций вместо того, чтобы делать собственную разработку.

Перейти на страницу:

Все книги серии IT для бизнеса

О криптовалюте просто. Биткоин, эфириум, блокчейн, децентрализация, майнинг, ICO & Co
О криптовалюте просто. Биткоин, эфириум, блокчейн, децентрализация, майнинг, ICO & Co

Эта книга – самый быстрый способ войти в мир криптовалют и начать ими пользоваться.Вы хоть раз спрашивали себя, что такое биткоин, криптовалюта или блокчейн? А децентрализация? Как вы думаете, кто выиграл от появления интернета? Люди, которые были подготовлены к нему и стали использовать его в личных или коммерческих целях до того, как подтянулись остальные.Новая технология «блокчейн» дает аналогичную возможность. Она играет сейчас такую же роль, какую играл интернет последние 20 лет. Главный вопрос, который каждый себе задает, это «c чего мне начать?»Джулиан Хосп, соучредитель компании TenX и один из ведущих мировых экспертов по криптовалютам, просто и доступно объясняет сложные термины и дает четкую инструкцию к действию: как пользоваться криптовалютами, соблюдая правила онлайн-безопасности.У Илона Маска уже есть книга Джулиана Хоспа. А у вас?

Джулиан Хосп

Деловая литература / Маркетинг, PR, реклама / Финансы и бизнес
Роман с Data Science. Как монетизировать большие данные
Роман с Data Science. Как монетизировать большие данные

Как выжать все из своих данных? Как принимать решения на основе данных? Как организовать анализ данных (data science) внутри компании? Кого нанять аналитиком? Как довести проекты машинного обучения (machine learning) и искусственного интеллекта до топового уровня? На эти и многие другие вопросы Роман Зыков знает ответ, потому что занимается анализом данных почти двадцать лет. В послужном списке Романа – создание с нуля собственной компании с офисами в Европе и Южной Америке, ставшей лидером по применению искусственного интеллекта (AI) на российском рынке. Кроме того, автор книги создал с нуля аналитику в Ozon.ru.Эта книга предназначена для думающих читателей, которые хотят попробовать свои силы в области анализа данных и создавать сервисы на их основе. Она будет вам полезна, если вы менеджер, который хочет ставить задачи аналитике и управлять ею. Если вы инвестор, с ней вам будет легче понять потенциал стартапа. Те, кто «пилит» свой стартап, найдут здесь рекомендации, как выбрать подходящие технологии и набрать команду. А начинающим специалистам книга поможет расширить кругозор и начать применять практики, о которых они раньше не задумывались, и это выделит их среди профессионалов такой непростой и изменчивой области. Книга не содержит примеров программного кода, в ней почти нет математики.В формате PDF A4 сохранен издательский макет.

Роман Зыков

Карьера, кадры / Прочая компьютерная литература / Книги по IT

Похожие книги

10 гениев бизнеса
10 гениев бизнеса

Люди, о которых вы прочтете в этой книге, по-разному относились к своему богатству. Одни считали приумножение своих активов чрезвычайно важным, другие, наоборот, рассматривали свои, да и чужие деньги лишь как средство для достижения иных целей. Но общим для них является то, что их имена в той или иной степени становились знаковыми. Так, например, имена Альфреда Нобеля и Павла Третьякова – это символы культурных достижений человечества (Нобелевская премия и Третьяковская галерея). Конрад Хилтон и Генри Форд дали свои имена знаменитым торговым маркам – отельной и автомобильной. Биографии именно таких людей-символов, с их особым отношением к деньгам, власти, прибыли и вообще отношением к жизни мы и постарались включить в эту книгу.

А. Ходоренко

Карьера, кадры / Биографии и Мемуары / О бизнесе популярно / Документальное / Финансы и бизнес