Практически все профессии, которые главным образом предполагают обработку информации и никак не привязаны к конкретному месту — например, в силу необходимости общаться с клиентами напрямую, — потенциально могут стать жертвой офшоринга в относительно недалеком будущем, а в последующем будут полностью автоматизированы. То, что следующим этапом станет автоматизация, отлично укладывается в логику прогресса. Поэтому можно ожидать, что с развитием технологий все больше и больше рутинных задач, которые сейчас выполняются работниками за пределами США в рамках модели офшоринга, в конце концов будут полностью переданы машинам. Это уже случилось с некоторыми видами работ в колл-центрах — выполнявшие их люди были заменены технологиями автоматизации голосового общения. Приход в сферу обслуживания клиентов по-настоящему мощных систем обработки естественного языка (например, системы Watson компании IBM) создает угрозу для огромного числа рабочих мест в офшоринговых колл-центрах.
На фоне этих процессов становится очевидным, что тем компаниям — и целым странам, которые вложили немалые средства в офшоринг, видя в нем путь к богатству и процветанию, не останется ничего другого, как подняться на следующую ступень по лестнице создания добавленной стоимости. Чем больше стандартных видов деятельности будет автоматизироваться, тем больше рабочих мест, требующих высокой квалификации и профессиональных знаний, будет попадать в поле зрения тех, кто специализируется на офшоринге. Я думаю, мы очень сильно недооцениваем ту роль, которую прогресс в области искусственного интеллекта, а также революция в области больших данных могут сыграть в ускорении темпов офшоризации все более широкого круга профессий, требующих высокой квалификации. Как мы видели, одним из постулатов подхода к менеджменту на основе больших данных является утверждение о том, что результаты алгоритмического анализа являются полноценной заменой человеческим суждениям и опыту. Даже до того, как прикладное ПО на основе искусственного интеллекта достигнет в своем развитии момента, когда станет возможной полная автоматизация всех задач, его уже можно будет использовать в качестве эффективного инструмента, который дает доступ ко все большему количеству аналитических возможностей и институциональных знаний, обеспечивающих бизнесу конкурентные преимущества. Получив в свое распоряжение такой инструмент, толковый молодой сотрудник офшоринговой компании вскоре сможет конкурировать с опытными специалистами из развитых стран, получающими за свою работу достойное вознаграждение.
Если объединить офшоринг с автоматизацией, эта комбинация может иметь по-настоящему сокрушительные последствия для рынка труда. В 2013 г. исследователи из Школы Мартина при Оксфордском университете провели работу, в ходе которой подробно изучили 700 профессий и специальностей в США. В результате они пришли к выводу, что почти 50 % соответствующих рабочих мест могут быть полностью автоматизированы{166}. Алан Блайндер и Алан Крюгер из Принстонского университета провели аналогичное исследование в отношении офшоринга и обнаружили, что около 25 % рабочих мест в США находятся под угрозой переноса в страны с низким уровнем оплаты труда{167}. Остается только надеяться, что в обоих этих исследованиях речь идет об одних и тех же рабочих местах! Во всяком случае это следует из анализа приведенных в них названий профессий и их описания — в значительной степени они совпадают. Однако если рассматривать последовательность возникновения во времени этих двух явлений, то ситуация выглядит несколько иначе. Во многих случаях первым заявляет о себе офшоринг, который в значительной мере выступает в качестве катализатора процесса автоматизации, затягивая многие виды высококвалифицированного труда в зону риска.