Читаем Репортаж с ничейной земли. Рассказы об информации полностью

Второй случай спуска (С2) осуществляется при условиях, перечисленных в таблице 2, и может быть представлен в виде такой же простой формулы:

С2 = Дн.э x Дв.э x Дк x П x Кс.

Таблица 2

Необходимые условия спуска

Обозначения 

условий

На нижнем этаже дверь лифта закрыта

Дн.э

На верхнем этаже дверь лифта закрыта

Дв.э

Дверь кабины закрыта

Дк

Пассажир находится в кабине

П

Пассажир в кабине нажал кнопку спуска

Кс

Чтобы лифт начал спускаться, должно быть выполнено или С1 или С2. В любом случае должен включиться мотор, спускающий лифт (М). Значит:

М = С1 + С2 = Дн.э x Дв.э x П x Кв + Дн.э x Дв.э x Дк x П x Кс.

Дальше все, как в обычной алгебре: вынося за скобки общие множители Дн.э и Дв.э, получим:

М = Дн.э x Дв.э x (П x Кв + Дк x П x Кс).

Тому, кто впервые столкнулся с алгеброй логики, нелегко увидеть в последней записи простую электрическую контактную схему. Но достаточно сопоставить между собой все три колонки 3-й таблицы, чтобы убедиться в том, что переход от формулы к схеме тоже является простым и логичным.

Таблица 3

Обозначение

алгебры

логики

Соответствующая

контактная схема

Словесное выражение

выполняемой операции

AxB

Цепь I - II будет замкнута в том случае, если сработали и А и В

A+B

Цепь I - II будет замкнута, если сработал А или В

A+B

Цепь I - II будет замкнута, если сработал А или не сработал В (при срабатывании В цепь размыкается)

Посмотрите внимательно на эту таблицу, и вы убедитесь в том, что изображенная на рисунке схема находится в полном соответствии с формулой:

М = Дн.э x Дв.э x (П x Кв + Дк x П x Кс).

Значит, правила алгебры логики помогли нам спроектировать простейшее автоматическое устройство, схема которого была получена нами сначала с помощью формулы, а затем в виде соединенных между собой в определенной последовательности контактов реле.

До тех пор пока в этой схеме не нарушены механические контакты и четко срабатывают реле, схема «помнит» условия, записанные в таблицах 1 и 2. Просмотрите еще раз эти условия, мысленно замыкая соответствующие контакты, и вы убедитесь, что цепь I - II, включающая мотор для спуска кабины, окажется замкнутой только в том случае, если выполнены все условия, соответствующие случаю С1 или С2.

Те же логические операции может с успехом выполнять электронная лампа. Если каждый из приходящих импульсов (хцу) может по отдельности отпирать электронную лампу, вызывая импульс тока в ее анодной цепи, значит лампа выполняет операцию х или у, то есть х + у. В случае, когда лампа отпирается при одновременном воздействии обоих импульсов, она выполняет операцию х и у (х · у). Каждый из этих импульсов в отдельности не способен отпереть лампу, и лишь при совместном их появле» нии лампа откроет им путь.

Надо сказать, что сложные контактные схемы начали применяться в автоматике значительно раньше, чем алгебра логики пришла на помощь конструкторам и инженерам. Долгое время такие схемы строились «по догадке».

Пока количество контактов в схеме не выходило за пределы десятка, такой способ никого не смущал. Но когда сложные задачи автоматики потребовали включения в схему десятков и сотен контактов, построение схем превратилось в мучительную головоломку. А с помощью алгебры логики любой школьник сможет безошибочно составить сложную схему. Когда проверили по формулам сложные схемы, созданные ранее «по догадке», оказалось, что в них одни и те же цепи замыкаются десятками параллельных контактов! Их можно было попросту отключить от электрической схемы, совершенно не нарушая работы автоматических устройств.

Что же тогда говорить о современных вычислительных машинах, схема которых состоит из сотен тысяч ячеек?

Без применения алгебры логики о создании подобной схемы не могло быть и речи. Зато с помощью этой необычной алгебры удается создать сложнейшие логические схемы, производящие целую серию операций в соответствии с заданной им программой. Логика позволяет этим устройствам в ответ на каждый сигнал «отыскать в памяти» нужные сведения, сопоставить их с этим сигналом, оценить результаты сопоставлений и направить их в нужный канал. Прежде чем совершить новую операцию, машина «оценивает» прежние результаты, руководствуясь теми же правилами логики: «Если имеется А и В, следует делать С».

Так возникает сложная последовательность «самостоятельных» действий автомата, подчиняющихся лишь самым общим правилам, известным математикам под названием «алгоритмов». Но как ни сложны эти операции, все они подчиняются формулам алгебры логики, причем в основе их всегда лежат простейшие операции типа А к В, А или В.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное