Читаем Репортаж с ничейной земли. Рассказы об информации полностью

Чувствуете, какая длинная получается здесь связь? Одно цепляется за другое. Надо знать форму принятого сигнала, определить состав его спектра и привлечь на помощь теорему Котельникова, для того чтобы ответить лишь на один, казалось бы, совсем не сложный вопрос: как быстро должен вращаться наш ползунок?

Но удивляться этому не приходится. Ведь с помощью ползунка мы хотим получать информацию. Так где же, как не в теории информации, должны искать мы ответа на каждый вопрос? Раз уж мы взялись конструировать систему космической связи, нам придется вооружиться терпением и шаг за шагом пройти все звенья этой цепи.

Предположим, что сигнал одного из датчиков, с которого мы хотим снимать «пробы», имеет сложную форму, изображенную на рисунке. Нетрудно заметить, что здесь есть определенная частота повторения: через равные промежутки времени ток датчика нарастает и падает до нуля. Если это происходит 100 раз в секунду, значит частота повторения составляет 100 герц.

Этот сложный сигнал содержит в себе множество простых (синусоидальных) сигналов различных частот: 100, 200, 300, 400 герц. При этом чем выше частота, тем слабее сигнал. Эти простые сигналы и образуют спектр.

Давайте изобразим этот спектр иначе. Пусть каждый сигнал спектра будет «привязан» к шкале, по которой отмечены все частоты. Теперь на нашем рисунке сложный сигнал датчика будет выглядеть как частокол. Высота этого «частокола» определяется уровнями сигналов. (Уровень синусоидального сигнала определяется его амплитудой, то есть наибольшим отклонением напряжения от нулевого значения.) Каждый сигнал спектра имеет в общем узоре (то есть в сложном сигнале) определенный «удельный вес». Начиная с некоторой частоты (например, 1000 герц), составляющие спектра будут настолько малы, что приемник наземной станции их попросту не замечает. Да их и не следует замечать: они так малы, что их отсутствие не повлияет на форму сигнала.

Вот теперь мы можем, наконец, воспользоваться теоремой Котельникова и определить необходимую частоту «проб». Смысл теоремы довольно прост: если среди многих частот, содержащихся в сложном сигнале, наибольшая частота, которую «замечает» приемник, составляет 1000 герц, то информация окажется достаточно полной только в том случае, если в течение каждой секунды «пробы» будут сниматься не меньше 2 тысяч раз.

Во всех случаях частота опроса должна быть в два раза больше самой высокой частоты, содержащейся в спектре сигнала.

Наука предсказаний

Все было бы хорошо, если бы сигналы всех датчиков имели неизменную форму и обладали определенной частотой повторения. Но на практике дело обстоит гораздо сложнее.

Например, если датчик дает информацию о распыленных в космосе мельчайших частицах, то сигнал в соответствующем канале непрерывно меняется, потому что частицы встречаются то чаще, то реже, плотность их может быть то постоянной, то изменяться в течение каждой секунды несколько раз. А когда изменяется форма сигнала, изменяется и его спектр. Наш «частокол» будет очень подвижным, он может стать то уже, то шире, а уровень прыгает то вверх, то вниз. Говоря образно, спектр будет «дышать». Как найти наибольшую частоту такого подвижного спектра? Как определить необходимую частоту наших «проб»? С какой скоростью должен производить опрос шаговый переключатель?

Чтобы ответить на эти вопросы, теория информации привлекает на помощь другую теорию - теорию случайных процессов.

Если частота и уровень образующих спектр сигналов изменяются по случайным законам, значит можно определить вероятности различных уровней и частот. А зная вероятности, можно предвидеть будущее. Спутник, скажем, существует только в проекте, а мы уже знаем, как будут вести себя сигналы из космоса, когда, достигнув орбиты, он действительно станет спутником нашей Земли. Но для этого нам придется исследовать множество подобных сигналов - ведь само понятие «вероятность» справедливо только для многократно повторяющихся событий.

Нельзя, например, применив теорию вероятностей, предсказать, сколько раз из десяти подброшенная монета упадет вверх гербом. Может быть, 5, а может быть, 3 или 6. И все же теория утверждает, что вероятность выпадения любой из сторон монеты равна 50 процентам, и можно с полной уверенностью предсказывать, что подбрасываемая монета не сможет опровергнуть этого утверждения. И действительно, когда английский ученый Карл Пирсон ради эксперимента подбросил монету 24 тысячи раз, число падения вверх гербом составило 50,05 процента! А ведь так оно и должно быть: чем больше бросков, тем более точно подтверждается то, что предсказано вероятностью. Здесь действует закон больших чисел.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное