Модульный характер создаваемых систем при стремлении производителей снизить затраты на производство в рамках унификации, в свою очередь неизменно сталкивается с еще одним – главным ограничением любого производства – технологическим. Развитие технологий создания микросистем как модулей для последующего создания систем различных типов и решаемых задач неизменно приходит к ограничению на уровне физического (теоретического) предела. В этих условиях модульное конструирование различных систем будет базироваться на технологии квантового копирования. Чем большее число производственных технологий достигнет своего физического предела, тем быстрее технология квантового копирования осуществит переход из класса базовых технологий в класс универсальных технологий, который с течением времени может остаться единственным технологическим классом.
11.5.3. Описание математической модели создания многоцелевой продукции
В предыдущих исследованиях отмечалось, что отличительной особенностью использования подавляющего большинства видов материальной продукции среднего и длительного периода пользования (как результатов труда человека) является многообразие целей и условий их применения, многовариантность структурных (архитектурных) решений, а также комплексов, в которых они используются. Но множественность характерна также и для технологического процесса создания конечной продукции (неопределенность исходных данных, неточность используемых моделей, многовариантность возможных при создании продукции конструктивных и алгоритмических решений). Эти факторы приводят к необходимости исследования задачи создания продукции, оптимальной в многоцелевой постановке, с точки зрения теоретико-множественного подхода. Одним из таких подходов является разработка математической модели многоэлементной многоцелевой продукции. Отметим, что подобным подходом может быть описана и комплексированная продукция, содержащая различные типы подсистем.
Для формирования математической модели многоцелевой продукции модульного типа определим понятийный аппарат и его техническую интерпретацию.
В предполагаемой модели, в отличие от одноцелевой модели
Элементами множества
Множество выполняемых заданий может быть как континуальным, описывая в многомерном пространстве ограниченную область с границей
Множество заданий
В случае полной информации множество
• всеми возможными значениями параметров единичных заданий;
• функцией частоты появления единичных заданий;
• функциями композиции (объединения и дробления) заданий. Частота появления единичных заданий, описанная на множестве заданий У, определяет потребную интегральную характеристику каждого единичного задания (например, вероятность выполнения конкретного задания из общей совокупности заданий, потребную частоту их решения, вероятность использования того или иного канала в комплексированной продукции и т. п.) и учитывается при выборе базовой схемы продукции.
Функции композиции определяют соответственно возможность объединения и дробления заданий перед их выполнением. Так, например, одна и та же информационная система наблюдения может быть использована для выполнения информационных задач обнаружения, распознавания, сопровождения и навигации как воздушных и наземных, так и на морских объектов.