Читаем Разработка ядра Linux полностью

Планировщик ОС Linux может обеспечивать жесткую процессорную привязку (processor affinity). Хотя планировщик пытается обеспечивать мягкую или естественную привязку путем удержания процессов на одном и том же процессоре, он также позволяет пользователям сказать: "Эти задания должны выполняться только на указанных процессорах независимо ни от чего". Значение жесткой привязки хранится в виде битовой маски в поле cpus_allowed структуры task_struct. Эта битовая маска содержит один бит для каждого возможного процессора в системе. По умолчанию все биты установлены в значение 1, и поэтому процесс потенциально может выполняться на всех процессорах в системе. Пользователь с помощью функции sched_setaffinity() может указать другую битовую маску с любой комбинацией установленных битов. Аналогично функция sched_getaffinity() возвращает текущее значение битовой маски cpus_allowed.

Ядро обеспечивает жесткую привязку очень простым способом. Во-первых, только что созданный процесс наследует маску привязки от родительского процесса. Поскольку родительский процесс выполняется на дозволенном процессоре, то и порожденный процесс также будет выполняться на дозволенном процессоре. Во-вторых, когда привязка процесса изменяется, ядро использует миграционные потоки (migration threads) для проталкивания задания на дозволенный процессор. Следовательно, процесс всегда выполняется только на том процессоре, которому соответствует установленный бит в поле cpus_allowed дескриптора процесса.

<p>Передача процессорного времени</p>

Операционная система Linux предоставляет системный вызов sched_yield() как механизм, благодаря которому процесс может явно передать процессор под управление другим ожидающим процессам. Этот вызов работает путем удаления процесса из активного массива приоритетов (где он в данный момент находится, потому что процесс выполняется) с последующим помещением этого процесса в истекший массив. Получаемый аффект состоит не только в том, что процесс вытесняется и становится последним в списке заданий с соответствующим приоритетом, а также в том, что помещение процесса в истекший массив гарантирует, что этот процесс не будет выполняться некоторое время. Так как задачи реального времени никогда не могут быть помещены в истекший массив, они составляют специальный случай. Поэтому они только перемещаются в конец списка заданий с таким же значением приоритета (и не помещаются в истекший массив). В более ранних версиях ОС. Linux семантика вызова sched_yield() была несколько иной. В лучшем случае задание только лишь перемещалось в конец списка заданий с данным приоритетом. Сегодня для пользовательских программ и даже для потоков пространства ядра должна быть полная уверенность в том, что действительно необходимо отказаться от использования процессора, перед тем как ввязывать функцию sched_yield().

В коде ядра, для удобства, можно вызывать функцию yield(), которая проверяет, что состояние задачи равно TASK_RUNNING, а после этого вызывает функцию sched_yield(). Пользовательские программы должны использовать системный вызов sched_yield().

<p>В завершение о планировщике</p>

Планировщик выполнения процессов является важной частью ядра, так как выполнение процессов (по крайней мере, для большинства из нас) — это основное использование компьютера. Тем не менее, удовлетворение всем требованиям, которые предъявляются к планировщику — не тривиальная задача. Большое количество готовых к выполнению процессов, требования масштабируемости, компромисс между производительностью и временем реакции, а также требования для различных типов загрузки системы приводят к тому, что тяжело найти алгоритм, который подходит для всех случаев. Несмотря на это, новый планировщик процессов ядра Linux приближается к тому, чтобы удовлетворить всем этим требованиям и обеспечить оптимальное решение для всех случаев, включая отличную масштабируемость и привлекательную реализацию.

Проблемы, которые остались, включают возможность точной настройки (или даже полную замену) алгоритма оценки степени интерактивности задания, который приносит много пользы, когда работает правильно, и приносит много неудобств, когда выполняет предсказания неверно. Работа над альтернативными реализациями продолжается. Когда-нибудь мы увидим новую реализацию в основном ядре.

Улучшение поведения планировщика для NUMA систем (систем с неоднородным доступом к памяти) становится все более актуальной задачей, так как количество машин на основе NUMA-платформ возрастает. Поддержка доменов планирования (scheduler domain) — абстракция, которая позволяет описать топологию процессов; она была включена в ядро 2.6 в одной из первых версий.

Перейти на страницу:

Похожие книги

1С: Бухгалтерия 8 с нуля
1С: Бухгалтерия 8 с нуля

Книга содержит полное описание приемов и методов работы с программой 1С:Бухгалтерия 8. Рассматривается автоматизация всех основных участков бухгалтерии: учет наличных и безналичных денежных средств, основных средств и НМА, прихода и расхода товарно-материальных ценностей, зарплаты, производства. Описано, как вводить исходные данные, заполнять справочники и каталоги, работать с первичными документами, проводить их по учету, формировать разнообразные отчеты, выводить данные на печать, настраивать программу и использовать ее сервисные функции. Каждый урок содержит подробное описание рассматриваемой темы с детальным разбором и иллюстрированием всех этапов.Для широкого круга пользователей.

Алексей Анатольевич Гладкий

Программирование, программы, базы данных / Программное обеспечение / Бухучет и аудит / Финансы и бизнес / Книги по IT / Словари и Энциклопедии
1С: Управление торговлей 8.2
1С: Управление торговлей 8.2

Современные торговые предприятия предлагают своим клиентам широчайший ассортимент товаров, который исчисляется тысячами и десятками тысяч наименований. Причем многие позиции могут реализовываться на разных условиях: предоплата, отсрочка платежи, скидка, наценка, объем партии, и т.д. Клиенты зачастую делятся на категории – VIP-клиент, обычный клиент, постоянный клиент, мелкооптовый клиент, и т.д. Товарные позиции могут комплектоваться и разукомплектовываться, многие товары подлежат обязательной сертификации и гигиеническим исследованиям, некондиционные позиции необходимо списывать, на складах периодически должна проводиться инвентаризация, каждая компания должна иметь свою маркетинговую политику и т.д., вообщем – современное торговое предприятие представляет живой организм, находящийся в постоянном движении.Очевидно, что вся эта кипучая деятельность требует автоматизации. Для решения этой задачи существуют специальные программные средства, и в этой книге мы познакомим вам с самым популярным продуктом, предназначенным для автоматизации деятельности торгового предприятия – «1С Управление торговлей», которое реализовано на новейшей технологической платформе версии 1С 8.2.

Алексей Анатольевич Гладкий

Финансы / Программирование, программы, базы данных