Читаем Разработка ядра Linux полностью

Эта функция вызывается всякий раз, когда система получает прерывание от устройства RTC. Прежде всего, следует обратить внимание на вызовы функций работы со спин-блокировками: первая группа вызовов гарантирует, что к переменной rtc_irq_data не будет конкурентных обращений другими процессами на SMP-машине, а вторая — защищает в аналогичной ситуации параметры структуры rtc_callback. Блокировки обсуждаются в главе 9, "Средства синхронизации в ядре".

Переменная rtc_irq_data содержит информацию об устройстве RTC и обновляется с помощью функции mod_timer. О таймерах рассказывается в главе 10, "Таймеры и управление временем".

Последняя часть кода, окруженная спин-блокировками, выполняет функцию обратного вызова (callback), которая может быть установлена извне. Драйвер RTC позволяет устанавливать функцию обратного вызова, которая может быть зарегистрирована пользователем и будет исполняться при каждом прерывании, приходящем от устройства RTC.

В конце функция обработки прерывания возвращает значение IRQ_HANDLED, чтобы указать, что прерывание от данного устройства обработано правильно. Так как этот обработчик прерывания не поддерживает совместное использование линий прерывания и не существует механизма, посредством которого обработчик прерываний RTC может обнаружить вложенные запросы на прерывание, то этот обработчик всегда возвращает значение IRQ_HANDLED.

<p>Контекст прерывания</p>

При выполнении обработчика прерывания или обработчика нижней половины, ядро находится в контексте прерывания. Вспомним, что контекст процесса — это режим, в котором работает ядро, выполняя работу от имени процесса, например выполнение системного вызова или потока пространства ядра. В контексте процесса макрос current возвращает указатель на соответствующее задание. Более того, поскольку в контексте процесса процесс связан с ядром, то контекст процесса может переходить в состояние ожидания или использовать функции планировщика каким- либо другим способом..

В противоположность только что рассмотренному, контекст прерывания не связан ни с одним процессом. Макрос current в контексте прерывания является незаконным (хотя он и указывает на процесс, выполнение которого было прервано). Так как нет процесса, то контекст прерывания не может переходить в состояние ожидания (sleep) — действительно, каким образом можно перепланировать его выполнение? Поэтому некоторые функции ядра не могут быть вызваны из контекста прерывания. Если функция может переводить процесс в состояние ожидания, то ее нельзя вызывать в обработчике прерывания, что ограничивает набор функций, которые можно использовать в обработчиках прерываний.

Контекст прерывания является критичным ко времени исполнения, так как обработчик прерывания прерывает выполнение некоторого программного кода. Код же самого обработчика должен быть простой и быстрый. Использование циклов проверки состояния чего-либо (busy loop) крайне нежелательно. Это очень важный момент. Всегда следует помнить, что обработчик прерывания прерывает работу некоторого кода (возможно, даже обработчика другой линии запроса на прерывание!). В связи со своей асинхронной природой обработчики прерываний должны быть как можно более быстрыми и простыми. Максимально возможную часть работы необходимо изъять из обработчика прерывания и переложить на обработчик нижней половины, который выполняется в более подходящее время.

Возможность установить стек контекста прерывания является конфигурируемой. Исторически, обработчик прерывания не имеет своего стека. Вместо этого он должен был использовать стек ядра прерванного процесса[31]. Стек ядра имеет размер две страницы памяти, что обычно соответствует 8 Кбайт для 32-разрядных аппаратных платформ и 16 Кбайт для 64-разрядных платформ. Так как в таком случае обработчики прерываний совместно используют стек, то они должны быть очень экономными в отношении того, что они в этом стеке выделяют. Конечно, стек ядра изначально является ограниченным, поэтому любой код ядра должен принимать это во внимание.

В ранних версиях ядер серии 2.6 была введена возможность ограничить размер стека ядра от двух до одной страницы памяти, что равно 4 Кбайт на 32-разрядных аппаратных платформах. Это уменьшает затраты памяти, потому что раньше каждый процесс требовал две страницы памяти ядра, которая не может быть вытеснена на диск. Чтобы иметь возможность работать со стеком уменьшенного размера, каждому обработчику прерывания выделяется свой стек, отдельный для каждого процессора. Этот стек называется стеком прерывания. Хотя общий размер стека прерывания и равен половине от первоначально размера совместно используемого стека, тем не менее в результате выходит, что суммарный размер стека получается большим, потому что на каждый стек прерывания выделяется целая страница памяти.

Перейти на страницу:

Похожие книги

Основы программирования в Linux
Основы программирования в Linux

В четвертом издании популярного руководства даны основы программирования в операционной системе Linux. Рассмотрены: использование библиотек C/C++ и стан­дартных средств разработки, организация системных вызовов, файловый ввод/вывод, взаимодействие процессов, программирование средствами командной оболочки, создание графических пользовательских интерфейсов с помощью инструментальных средств GTK+ или Qt, применение сокетов и др. Описана компиляция программ, их компоновка c библиотеками и работа с терминальным вводом/выводом. Даны приемы написания приложений в средах GNOME® и KDE®, хранения данных с использованием СУБД MySQL® и отладки программ. Книга хорошо структурирована, что делает обучение легким и быстрым. Для начинающих Linux-программистов

Нейл Мэтью , Ричард Стоунс , Татьяна Коротяева

ОС и Сети / Программирование / Книги по IT
97 этюдов для архитекторов программных систем
97 этюдов для архитекторов программных систем

Успешная карьера архитектора программного обеспечения требует хорошего владения как технической, так и деловой сторонами вопросов, связанных с проектированием архитектуры. В этой необычной книге ведущие архитекторы ПО со всего света обсуждают важные принципы разработки, выходящие далеко за пределы чисто технических вопросов.?Архитектор ПО выполняет роль посредника между командой разработчиков и бизнес-руководством компании, поэтому чтобы добиться успеха в этой профессии, необходимо не только овладеть различными технологиями, но и обеспечить работу над проектом в соответствии с бизнес-целями. В книге более 50 архитекторов рассказывают о том, что считают самым важным в своей работе, дают советы, как организовать общение с другими участниками проекта, как снизить сложность архитектуры, как оказывать поддержку разработчикам. Они щедро делятся множеством полезных идей и приемов, которые вынесли из своего многолетнего опыта. Авторы надеются, что книга станет источником вдохновения и руководством к действию для многих профессиональных программистов.

Билл де Ора , Майкл Хайгард , Нил Форд

Программирование, программы, базы данных / Базы данных / Программирование / Книги по IT
Программист-прагматик. Путь от подмастерья к мастеру
Программист-прагматик. Путь от подмастерья к мастеру

Находясь на переднем крае программирования, книга "Программист-прагматик. Путь от подмастерья к мастеру" абстрагируется от всевозрастающей специализации и технических тонкостей разработки программ на современном уровне, чтобы исследовать суть процесса – требования к работоспособной и поддерживаемой программе, приводящей пользователей в восторг. Книга охватывает различные темы – от личной ответственности и карьерного роста до архитектурных методик, придающих программам гибкость и простоту в адаптации и повторном использовании.Прочитав эту книгу, вы научитесь:Бороться с недостатками программного обеспечения;Избегать ловушек, связанных с дублированием знания;Создавать гибкие, динамичные и адаптируемые программы;Избегать программирования в расчете на совпадение;Защищать вашу программу при помощи контрактов, утверждений и исключений;Собирать реальные требования;Осуществлять безжалостное и эффективное тестирование;Приводить в восторг ваших пользователей;Формировать команды из программистов-прагматиков и с помощью автоматизации делать ваши разработки более точными.

А. Алексашин , Дэвид Томас , Эндрю Хант

Программирование / Книги по IT