Читаем Разработка ядра Linux полностью

В компьютерных и связанных с ними дисциплинах полезно выражать сложность, или масштабируемость, алгоритмов с помощью количественных значащих характеристик (в отличие от менее наглядных характеристик, таких как быстрый или медленный). Существуют различные методы представления масштабируемости. Один из наиболее часто используемых подходов — это исследование асимптотического поведения алгоритмов. Асимптотическое поведение — это поведение алгоритма при достаточно больших значениях входных параметров или, другими словами, при стремлении входных параметров к бесконечности. Асимптотическое поведение показывает, как масштабируется алгоритм, когда его входные параметры принимают все большие и большие значения. Исследование масштабируемости алгоритмов, т.е. изучение свойств алгоритма при больших значениях входных параметров, позволяет смоделировать поведение алгоритма по отношению к тестовым задачам и лучше понять особенности этого поведения.

<p>Алгоритмы</p>

Алгоритм — это последовательность действий, возможно, с одним входом или более и, в конечном счете, с одним результатом или выходом. Например, подсчет количества людей в комнате представляет собой алгоритм, для которого люди, находящиеся в комнате, являются входными данными, а количество людей в комнате — выходными данными. Операции замещения страниц в ядре Linux или планирование выполнения процессов — это тоже примеры алгоритмов. Математически алгоритм аналогичен функции (или, по крайней мере, может быть смоделирован с помощью функции). Например, если мы обозначим алгоритм подсчета людей в комнате буквой f, а количество людей, которых необходимо посчитать, буквой x, то функцию подсчета количества людей можно записать следующим образом.

y=f(x)

В этом выражении буквой y обозначено время подсчета количества людей в комнате.

<p>Множество О</p>

Полезным обозначением асимптотического поведения функции является верхняя граница — функция, значения которой всегда больше значений изучаемой функции. Говорят, что верхняя граница некоторой функции растет быстрее, чем рассматриваемая функция. Специальное обозначение "большого-O" используется для описания этого роста. Это записывается как f(x) ∈ О(g(x)) и читается так: f принадлежит множеству "O-большого" от g. Формальное математическое определение имеет следующий вид.

Если f(x) принадлежит множеству большого O(g(x)) , то ∃c и x', такие что f(x)≤c∙g(x), ∀x>x'

Это означает, что время вычисления функции f(x) всегда меньше времени вычисления функции g(x), умноженного на некоторую константу, и это справедливо всегда, для всех значений x, больших некоторого начального значения х'.

Другими словами, мы ищем функцию, которая ведет себя не лучше, чем наш алгоритм в наихудшей ситуации. Можно посмотреть на результаты того, как ведет себя функция при очень больших значениях входных параметров, и понять, как ведет себя алгоритм.

<p>Множество большого-тета</p>

Когда говорят об обозначении большого-О, то чаще всего имеют в виду то, что Дональд Кнут (Donald Knuth) описывал с помощью обозначения "большого-тета". Обозначение "большого-О" соответствует верхней границе. Например, число 7 — это верхняя граница числа 6, кроме того, числа 9, 12 и 65 — это тоже верхние границы числа 6. Когда рассматривают рост функции, то обычно наиболее интересна наименьшая верхняя граница или функция, которая моделирует как верхнюю, так и нижнюю границу[100]. Профессор Кнут описывает это с помощью обозначения большого-тета следующим образом.

Если f(x) принадлежит множеству большого-тета от g(x), то g(x) является одновременно и верхней и нижней границей f(x)

Можно также сказать, что функция f(x) порядка функции g(x). Порядок, или множество "большого-тета" алгоритма, — один из наиболее важных математических инструментов изучения алгоритмов.

Следовательно, когда говорят об обозначении большого-О, то чаще всего имеют в виду наименьший возможный вариант "большого-О" — "большое-тета". Об этом не нужно особо волноваться, если, конечно, нет желания доставить удовольствие профессору Кнуту.

<p>Объединяем все вместе</p>

Вернемся снова к подсчету количества людей в комнате. Допустим, что можно считать по одному человеку за секунду. Следовательно, если в комнате находится 7 человек, то подсчет займет 7 секунд. Очевидно, что если будет n человек, то подсчет всех займет n секунд. Поэтому можно сказать, что этот алгоритм масштабируется, как O(n). Что если задача будет состоять в том, чтобы станцевать перед всеми, кто находится в комнате? Поскольку, независимо от того, сколько человек будет в комнате, это займет одно и то же время, значит, этот алгоритм масштабируется, как O(1). В табл. В.1 показаны другие часто встречающиеся характеристики сложности.

Перейти на страницу:

Похожие книги

Основы программирования в Linux
Основы программирования в Linux

В четвертом издании популярного руководства даны основы программирования в операционной системе Linux. Рассмотрены: использование библиотек C/C++ и стан­дартных средств разработки, организация системных вызовов, файловый ввод/вывод, взаимодействие процессов, программирование средствами командной оболочки, создание графических пользовательских интерфейсов с помощью инструментальных средств GTK+ или Qt, применение сокетов и др. Описана компиляция программ, их компоновка c библиотеками и работа с терминальным вводом/выводом. Даны приемы написания приложений в средах GNOME® и KDE®, хранения данных с использованием СУБД MySQL® и отладки программ. Книга хорошо структурирована, что делает обучение легким и быстрым. Для начинающих Linux-программистов

Нейл Мэтью , Ричард Стоунс , Татьяна Коротяева

ОС и Сети / Программирование / Книги по IT
97 этюдов для архитекторов программных систем
97 этюдов для архитекторов программных систем

Успешная карьера архитектора программного обеспечения требует хорошего владения как технической, так и деловой сторонами вопросов, связанных с проектированием архитектуры. В этой необычной книге ведущие архитекторы ПО со всего света обсуждают важные принципы разработки, выходящие далеко за пределы чисто технических вопросов.?Архитектор ПО выполняет роль посредника между командой разработчиков и бизнес-руководством компании, поэтому чтобы добиться успеха в этой профессии, необходимо не только овладеть различными технологиями, но и обеспечить работу над проектом в соответствии с бизнес-целями. В книге более 50 архитекторов рассказывают о том, что считают самым важным в своей работе, дают советы, как организовать общение с другими участниками проекта, как снизить сложность архитектуры, как оказывать поддержку разработчикам. Они щедро делятся множеством полезных идей и приемов, которые вынесли из своего многолетнего опыта. Авторы надеются, что книга станет источником вдохновения и руководством к действию для многих профессиональных программистов.

Билл де Ора , Майкл Хайгард , Нил Форд

Программирование, программы, базы данных / Базы данных / Программирование / Книги по IT
Программист-прагматик. Путь от подмастерья к мастеру
Программист-прагматик. Путь от подмастерья к мастеру

Находясь на переднем крае программирования, книга "Программист-прагматик. Путь от подмастерья к мастеру" абстрагируется от всевозрастающей специализации и технических тонкостей разработки программ на современном уровне, чтобы исследовать суть процесса – требования к работоспособной и поддерживаемой программе, приводящей пользователей в восторг. Книга охватывает различные темы – от личной ответственности и карьерного роста до архитектурных методик, придающих программам гибкость и простоту в адаптации и повторном использовании.Прочитав эту книгу, вы научитесь:Бороться с недостатками программного обеспечения;Избегать ловушек, связанных с дублированием знания;Создавать гибкие, динамичные и адаптируемые программы;Избегать программирования в расчете на совпадение;Защищать вашу программу при помощи контрактов, утверждений и исключений;Собирать реальные требования;Осуществлять безжалостное и эффективное тестирование;Приводить в восторг ваших пользователей;Формировать команды из программистов-прагматиков и с помощью автоматизации делать ваши разработки более точными.

А. Алексашин , Дэвид Томас , Эндрю Хант

Программирование / Книги по IT