где мы пользовались 7-м правилом действий со степенями (которое говорит, например, что 2
Вычитание устранило из бесконечной суммы все члены с четными числами. Остались только члены, в которые входят нечетные числа.
Вспоминая решето Эратосфена, умножим теперь обе части порченного равенства на
Теперь вычтем это выражение из того, которое мы получили ранее. При вычитании левых частей будем рассматривать
Из бесконечной суммы исчезли все члены, содержащие числа, кратные тройке! Первое выжившее число — это теперь 5.
Умножив теперь обе части полученной формулы на
А теперь, вычитая это равенство из предыдущего и рассматривая на этот раз
Все слагаемые с числами, кратными 5, исчезли при вычитании, и первое выжившее число в правой части — это 7.
Замечаете сходство с решетом Эратосфена? Но вы должны заметить и отличие. При работе с исходным решетом мы оставляли сами простые числа в неприкосновенности, удаляя только их кратные — числа, полученные из них умножением на 2, 3, 4, …. Здесь же при вычитании мы устраняем из правой части как само простое число, так и все его кратные.
Если продолжать описанную процедуру до достаточно большого простого числа, скажем, до 997, мы получим
Теперь заметим, что если
где в левой части содержится ровно одно выражение в скобках для
Это — Золотой Ключ. Чтобы он предстал перед нами во всей красе, давайте немного его почистим. Дроби с дробными знаменателями нравятся мне ничуть не больше, чем вам, а кроме того, есть еще полезные математические приемы, которые позволят нам сэкономить на наборе формул.
Прежде всего вспомним 5-е правило действий со степенями: оно говорит, что
Есть даже еще лучший способ. Вспомним про обозначение ∑, введенное в главе 5.viii. Когда мы складываем компанию слагаемых единообразной структуры, их сумму можно записать коротко, используя знак ∑; у этого имеется эквивалент для
Читается это так: «Дзета от
И сумма в левой части, и произведение в правой части простираются до бесконечности. Это, кстати, дает еще одно доказательство того факта, что простые числа никогда не кончаются. Если бы они вдруг кончились, то произведение в правой части содержало бы конечное число множителей, и тем самым мы его немедленно вычислили бы как какое-то число при абсолютно любом аргументе
Что же такого — как вы, должно быть, недоумеваете — замечательного, такого неординарного и вызывающего имеется в выражении (7.3), что оно удостоилось столь высокопарного имени?