Я отдыхал в горах Гарца вместе с несколькими коллегами. Двое из нас решили, что стоит проехать 30 миль, отделявших нас от Геттингена, чтобы взглянуть на черновики Римана, хранящиеся там в библиотеке. Лично мне было интересно посмотреть на заметки, относящиеся примерно ко времени написания работы 1859 года о дзета-функции.
Но мой коллега — прикладной математик, которого не занимала теория чисел, интересовался совершенно другой работой Римана, имеющей отношение к возмущениям. Представим себе большую каплю газа в пустом пространстве, удерживаемую в одно целое гравитационным притяжением между частицами этого газа. Что будет, если по ней хорошенько ударить? Вообще-то могут случиться две основные вещи: капля может разлететься на части, а может начать вибрировать с некоторой частотой. Все зависит от величины, направления и места приложения удара, а также формы и размера исходной капли и т.д.
Мы добрались до библиотеки, и я попросил, чтобы мне показали заметки по теории чисел, а мой коллега — по теории возмущений. Библиотекарь что-то проверила, а потом вернулась и сказала, что нам обоим нужна одна и та же подшивка черновиков Римана.
Разумеется, добавляет Джонатан, в распоряжении Римана не было операторной алгебры XX столетия, которая помогла бы ему в задаче о возмущениях и дала бы ему все возможные частоты вибраций в виде спектра собственных значений. Ему приходилось продираться сквозь дифференциальные уравнения, создавая специально для своих целей некоторый зачаток теории операторов. И все же трудно поверить, что ум столь острый и столь проницательный, как у Римана, не заметил бы аналогии между нулями дзета-функции, нанизанными на критическую прямую, и спектром частот в теории возмущений — аналогии, которая при столь драматических обстоятельствах высветилась за чашкой вечернего чая в Фалд-Холл 113 лет спустя!
Мне довелось услышать этот рассказ Китинга в Институте Куранта при Нью-Йоркском университете в начале лета 2002 года. Поводом была четырехдневная серия лекций и дискуссий, организованная Американским математическим институтом (АМИ). Называлось все это мероприятие «Рабочее совещание о дзета-функциях и связанных с ними гипотезах Римана».
На эту конференцию были приглашены многие знаменитости. Показался и сам Атле Сельберг, нисколько не потерявший прежнюю остроту ума в свои 84 года. (В ходе самого первого выступления он поддел Питера Сарнака по поводу одного факта из истории математики. Во время обеденного перерыва я отправился в великолепную библиотеку Курантовского института и проверил, как оно на самом деле. Сельберг оказался прав.) Присутствовали многие из тех, чьи имена мы упоминали в предшествующих главах, включая обоих открывателей закона Монтгомери-Одлыжко. Среди других участников был нынешняя математическая супер-звезда Эндрю Уайлс, ставший знаменитым после того, как доказал Последнюю теорему Ферма, Хэролд Эдвардс, автор несколько раз упоминавшейся самой надежной книги о дзета-функции, и Дэниел Бамп — одно из двух имен, связанных с самым неординарным на слух из всех результатов, имеющих отношение к ГР, — теоремой Бампа-Нг.[204]