Читаем Прорыв за край мира полностью

Ускоренное расширение при р < -1/3 ε можно интерпретировать как действие силы гравитации, которая стала расталкивающей. Этот факт сам по себе поразителен — гравитация издревле отождествлялась с тяготением. Правда, этим свойством отталкивания нельзя воспользоваться, как антигравитацией в фантастических романах. Поле с отрицательным давлением должно занимать огромное пространство, больше размеров горизонта, иначе на краях оно будет очень быстро падать и «выгорать», стремясь сжаться. К тому же поле должно быть весьма однородным внутри этого пространства, поскольку любые его перепады (градиент) дают вклад в притяжение. Чтобы расталкивание сработало, расширение должно быстро вынести все «края» пространства, занимаемого полем, за горизонт. Таким образом, расталкивающий эффект гравитации не может сделать ничего, кроме как создать огромную вселенную или раздуть уже существующую.

Теперь вспомним лямбда-член, введенный Эйнштейном в попытке стабилизировать нестационарную Вселенную. Он традиционно обозначается греческой «лямбда», откуда и получил свое название (альтернатива — космологическая постоянная), и фигурирует в уравнениях следующим образом:

Rμν — Rgμν — 8πΛgμν = 16πTμν/c4

Он тоже имел расталкивающий эффект и был по определению константой во всем пространстве. Уравнение Фридмана с лямбда-членом в отсутствие материи и в пренебрежении кривизной пространства выглядит так:

(ȧ/a)2 — 8π/3 · = 0,

где а — масштабный фактор, ȧ — его производная по времени. Уравнение Фридмана без лямбда-члена, но со скалярным полем, вошедшим в уравнение через тензор энергии-импульса:

(ȧ/a)2 = 8πG/3ε

Да ведь это абсолютно то же самое, если в постоянно во времени и пространстве и если положить Λ = ε! Так лямбда-член, забракованный Эйнштейном, вернулся в историю благодаря развитию теории поля, на сей раз в правую часть уравнения, через тензор энергии-импульса.

Каким будет решение уравнения Фридмана, приведенного выше? Конечно, экспонента: а = еt, где t, напомним, — безразмерное время, выражаемое через обычное время, как t = trH; Н — постоянная Хаббла, которая в данном случае не меняется со временем: H = √(8ωG/3ε).

Это решение носит имя де Ситтера, а умозрительная соответствующая ему вселенная называется «миром де Ситтера». Это несколько странный мир. Несмотря на экспоненциальный рост масштаба, в нем ничего не меняется. В нем нет глобальной выделенной системы отсчета (а в нашей Вселенной она есть — та, что связана с усредненным движением галактик и реликтовым излучением). Там непонятно, как определить причинно связанную область — горизонт. Более того, для мира де Ситтера можно преобразовать координаты так, что он будет вообще стационарным.

Странности этого мира снимаются малейшим отклонением от вакуумного состояния.

Если там есть хоть немного обычной материи, если скалярное поле и его плотность хоть чуть-чуть меняются во времени или пространстве, сразу экспоненциальное расширение становится реальным, хотя закон расширения будет чуть-чуть отличаться от экспоненты (см. врезку и рис. 13.1). Сразу исчезает стационарность, появляется выделенная глобальная система отсчета и многое другое.

Переход от чисто вакуумного состояния р = -ε к близкому, например р = -0,99ε, описан на врезке и проиллюстрирован на рис. 13.1. Переход достаточно плавен, но есть и серьезное отличие — где-то прошлом степенная зависимость упирается в ноль, а в будущем сильно отклоняется вниз. Кстати, теоретики рассматривают возможность р < -ε. При этом нарушается так называемый принцип изотропной энергодоминантности, который кажется естественным, но напрямую ниоткуда не следует. Субстанция с таким уравнением состояния называется «фантомной материей», или «фантомной энергией» (второй вариант названия употребляется чаще). Подобный экзотический случай также проиллюстрирован на рис. 13.1: кривая в будущем отклоняется вверх от экспоненты и за конечное время уходит в бесконечность. Это так называемый «Большой разрыв» — страшилка, которую очень любят журналисты (Вселенную вплоть до атомов и нуклонов разорвет на элементарные частицы).

Фактически, сейчас мы наполовину раскрыли карты. Ускоренное расширение Вселенной — тот стержень, вокруг которого будет разворачиваться сюжет в следующей части. Но эта книга не детектив, и стержня мало — нужны еще конкретные сценарии с деталями, в которых может скрываться дьявол.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука