Чтобы правильно вставить скалярное поле в уравнение Фридмана, осталось выяснить его уравнение состояния: как давление скалярного поля зависит от его энергии. Представим себе чудесный ящик (чудесный, поскольку в реальном мире такое воспроизвести невозможно), заполненный скалярным полем, вне которого поле равно нулю. Пусть у ящика есть выдвижная стенка с ручкой, которую можно вытягивать, увеличивая объем ящика. Потянем за стенку, отодвинув ее наружу на расстояние
Это особое уравнение состояния: единственное с ненулевой плотностью энергии, которое лоренц-инвариантно, т.е. не выдаст наблюдателю, с какой скоростью он движется. Наблюдатель в любой системе отсчета будет «видеть» то же самое: плотность энергии
Благодаря лоренц-инвариантности такое уравнение состояния называют «вакуумным», подразумевая под вакуумом среду, которая не содержит частиц или переменных полей, не имеет температуры, лоренц-инвариантна, но не обязательно имеет нулевую плотность энергии.
Отрицательное давление само по себе не должно сильно удивлять. Из бытовых явлений самую близкую по смыслу демонстрацию дает поверхностное натяжение. Закрыв глаза на то, что это двумерный случай, имеем аналогию: мыльный пузырь. Поверхностное натяжение на пузыре не зависит от размеров последнего, при надувании пузыря любой элемент его поверхности не меняется, только поверхность становится более плоской. Вспомним теперь демонстрацию расширяющейся Вселенной в виде надуваемого шарика и заменим резиновый шарик на мыльный пузырь — на поверхности ничего нарисовать нельзя, зато состояние элемента «пространства» при надувании не меняется. Натяжение остается прежним.
Вернемся к вселенной, заполненной скалярным полем. Мыльный пузырь за счет поверхностного натяжения стремится сжаться — если из пузыря внезапно исчезнет воздух — он сожмется. А вселенная?
Оказывается, отрицательное давление (натяжение) заставляет вселенную расширяться с ускорением.
Чтобы показать это, снова обратимся к уравнению Фридмана. Выше мы выписали его для двух вариантов уравнения состояния — пылевидного (р = 0) и ультрарелятивистского (
Во-вторых, плотность энергии меняется из-за того, что давление совершает работу:
в сумме:
Решение этого уравнения:
где
Подставим его в уравнение Фридмана:
или
Константа
Решение уравнение Фридмана с таким безразмерным временем (см. врезку):
Если