Итак, рассмотрев мотивы и цели, перейдем к описанию основных определений из библиотеки STL, а затем изучим примеры их применения для более простого создания более совершенного кода для обработки данных.
20.3. Последовательности и итераторы
Основным понятием в библиотеке STL является последовательность. С точки зрения авторов этой библиотеки, любая коллекция данных представляет собой последовательность. Последовательность имеет начало и конец. Мы можем перемещаться по последовательности от начала к концу, при необходимости считывая или записывая значение элементов. Начало и конец последовательности идентифицируются парой итераторов.
Последовательность можно представить следующим образом:
Здесь begin
и end
— итераторы; они идентифицируют начало и конец последовательности. Последовательность в библиотеке STL часто называют “полуоткрытой” (“half-open”); иначе говоря, элемент, идентифицированный итератором begin
, является частью последовательности, а итератор end
ссылается на ячейку, следующую за концом последовательности. Обычно такие последовательности (диапазоны) обозначаются следующим образом: [begin:end]
. Стрелки, направленные от одного элемента к другому, означают, что если у нас есть итератор на один элемент, то мы можем получить итератор на следующий.
• Что такое итератор? Это довольно абстрактное понятие.
• Итератор указывает (ссылается) на элемент последовательности (или на ячейку, следующую за последним элементом).
• Два итератора можно сравнивать с помощью операторов ==
и !=
.
• Значение элемента, на который установлен итератор, можно получить с помощью унарного оператора *
(“разыменование”).
• Итератор на следующий элемент можно получить, используя оператор ++
.
Допустим, что p
и q
— итераторы, установленные на элементы одной и той же последовательности.
Очевидно, что идея итератора связана с идеей указателя (см. раздел 17.4). Фактически указатель на элемент массива является итератором. Однако многие итераторы являются не просто указателями; например, мы могли бы определить итератор с проверкой выхода за пределы допустимого диапазона, который генерирует исключение при попытке сослаться за пределы последовательности [begin:end]
или разыменовать итератор end
. Оказывается, что итератор обеспечивает огромную гибкость и универсальность именно как абстрактное понятие, а не как конкретный тип. В этой и следующей главах при приведем еще несколько примеров.
ПОПРОБУЙТЕ
Напишите функцию void copy(int* f1, int* e1, int* f2)
, копирующую элементы массива чисел типа int
, определенного последовательностью [f1:e1]
в другую последовательность [f2:f2+(e1–f1)]
. Используйте только упомянутые выше итераторы (а не индексирование).
Итераторы используются в качестве средства связи между нашим кодом (алгоритмами) и нашими данными. Автор кода знает о существовании итераторов (но не знает, как именно они обращаются к данным), а поставщик данных предоставляет итераторы, не раскрывая всем пользователям детали механизма хранения данных. В результате получаем достаточно независимые друг от друга алгоритмы и контейнеры. Процитируем Алекса Степанова: “Алгоритмы и контейнеры библиотеки STL потому так хорошо работают друг с другом, что ничего не знают друг о друге”. Вместо этого и алгоритмы, и контейнеры знают о последовательностях, определенных парами итераторов.
Иначе говоря, автор кода больше не обязан ничего знать о разнообразных способах хранения данных и обеспечения доступа к ним; достаточно просто знать об итераторах. И наоборот, если поставщик данных больше не обязан писать код для обслуживания огромного количества разнообразных пользователей, ему достаточно реализовать итератор для данных. На базовом уровне итератор определен только операторами *
, ++
, ==
и !=
. Это обеспечивает его простоту и быстродействие.
Библиотека STL содержит около десяти контейнеров и 60 алгоритмов, связанных с итераторами (см. главу 21). Кроме того, многие организации и отдельные лица создают контейнеры и алгоритмы в стиле библиотеки STL. Вероятно, библиотека STL в настоящее время является наиболее широко известным и широко используемым примером обобщенного программирования (см. раздел 19.3.2). Если вы знаете основы и несколько примеров, то сможете использовать и все остальное.
20.3.1. Вернемся к примерам