Читаем Природа и общество. Модели катастроф полностью

На рис.7 изображен важный и часто встречающийся вид зависимости М(К), при котором фазовая кривая выпукла, проходит через начало координат О и пересекает биссектрису координатного угла в единственной точке, обозначенной цифрой 1. Ясно, что начало координат, где К = М = 0, представляет собой точку равновесия популяции, но неинтересную, поскольку в ней популяция попросту отсутствует. Эта точка равновесия приобретает значение в тех случаях, когда точка кривой Р приближается к О: это значит, что популяция гибнет. Как видно из предыдущего анализа, при рассматриваемом виде фазовой кривой это не может произойти, так как с каждым годом численность ее

Рис.7

возрастает, во всяком случае, на дуге кривой выше биссектрисы: точка R всегда правее точки Р, то есть K2 > K1 (см.рис.6). Более того, из выпуклости кривой следует, что ее хорда ОР опускается при движении точки Р вправо (этот наглядно очевидный факт можно математически доказать, но достаточно взглянуть на рис.7). Тем самым, убывает наклон прямой ОР по отношению к оси абсцисс, измеряемый отношением ординаты точки Р к ее абсциссе и называемый угловым коэффициентом прямой ОР : он равен тангенсу угла между ОР и осью абсцисс и убывает вместе с этим углом). Итак, при возрастании К отношение М/К убывает. Это отношение называется коэффициентом размножения популяции; оно определяет, во сколько раз число особей в следующем поколении больше, чем в предыдущем (если М/К > 1), или меньше (если М/К < 1). Напротив, когда К уменьшается, коэффициент размножения возрастает; наибольшее значение он имеет при К = 0, то есть (биологически) при исчезающе малой популяции. Математически это наибольшее значение получается предельным переходом [Читатель, которого затруднит эта фраза, может опустить ее без вреда для дальнейшего]: когда К уменьшается до нуля, угловой коэффициент "хорды" ОР, равный М/К, стремится к пределу, который называется производной функции М(К) при К = 0 и обозначается М'(0); геометрический смысл этого предела – угловой коэффициент касательной к графику в точке О.

Биологический смысл полученного результата состоит в том, что растущая популяция занимает наиболее удобные места для питания и откладывания личинок, от чего размножение замедляется. Часто влияют и другие факторы: выделение продуктов жизнедеятельности, загрязняющее среду, рост инфекционных заболеваний, и т.п. Возможно, конкуренция за места обитания служит именно для избежания этих явлений. Вплоть до точки 1 (то есть при К < Кc, где Кc – абсцисса точки 1) отношение М/К остается больше 1 (см.рис.7), то есть М > К, и популяция с каждым годом возрастает. Но при К > Кc наклон прямой ОР становится меньше 1, то есть М < К, и популяция начинает убывать: это можно истолковать как эффект перенаселения.

Особый интерес представляют стационарные состояния, в которых М(К) = К. Очевидно, если популяция попала в такое состояние, то она в нем навсегда останется, так как численность ее точно воспроизводится через любое число лет. Но, конечно, этот вывод имеет лишь формальное значение, так как уже небольшое случайное отклонение от состояния равновесия может привести к удалению от этого состояния. Главный интерес представляют устойчивые состояния равновесия – такие, что при любом небольшом отклонении от этого состояния популяция к нему возвращается. В нашем случае, когда фазовая кривая выпукла, она может пересекать биссектрису координатного угла в единственной точке (подумайте, почему?). Мы обозначили эту точку через 1, ее абсциссу через Кc, а ордината ее Мc = Kc . Как мы покажем, точка 1 – устойчивая точка равновесия нашей популяции.

Начнем с популяции, изображаемой точкой графика Р000) (рис.8), то есть с начальной численностью популяции К0, равной

Рис.8

абсциссе точки Р0, и численностью в следующем году, равной ординате М0 точки P0 (чтобы не загромождать чертеж, мы не указываем проекции на оси).

Перейти на страницу:

Похожие книги

Биосфера и Ноосфера
Биосфера и Ноосфера

__________________Составители Н. А. Костяшкин, Е. М. ГончароваСерийное оформление А. М. ДраговойВернадский В.И.Биосфера и ноосфера / Предисловие Р. К. Баландина. — М.: Айрис-пресс, 2004. — 576 с. — (Библиотека истории и культуры).В книгу включены наиболее значимые и актуальные произведения выдающегося отечественного естествоиспытателя и мыслителя В. И. Вернадского, посвященные вопросам строения биосферы и ее постепенной трансформации в сферу разума — ноосферу.Трактат "Научная мысль как планетное явление" посвящен истории развития естествознания с древнейших времен до середины XX в. В заключительный раздел книги включены редко публикуемые публицистические статьи ученого.Книга представит интерес для студентов, преподавателей естественнонаучных дисциплин и всех интересующихся вопросами биологии, экологии, философии и истории науки.© Составление, примечания, указатель, оформление, Айрис-пресс, 2004__________________

Владимир Иванович Вернадский

Геология и география / Экология / Биофизика / Биохимия / Учебная и научная литература
Что с нами происходит?: Записки современников
Что с нами происходит?: Записки современников

На страницах предлагаемого сборника отразились многие животрепещущие идеи наших дней, связанные с развитием духовной культуры общества.Проблемы экологии, вопросы хозяйствования органично сочетаются здесь с проблемами философии, литературы, театра, архитектуры. Среди авторов сборника — крупнейший современный философ А. Лосев, писатели В. Белов, В. Распутин, А. Адамович, Ю. Лощиц, известные публицисты В. Песков и А. Стреляный, советские ученые Ф. Шипунов, И. Толстой, Ю. Бородай, П. В. Флоренский и другие.В книге публикуются неизвестные материалы, принадлежащие великому русскому ученому В. И. Вернадскому и его ученику Р. С. Ильину, трагически погибшему в годы необоснованных репрессий.

Алесь Адамович , Валентина Сергеевна Неаполитанская , Татьяна Михайловна Глушкова , Фатей Яковлевич Шипунов , Юрий Михайлович Лощиц

Экология