Хотя может оказаться, что разные точки "облака" относятся к одному и тому же участку (и к разным годам наблюдения), в общем случае они относятся к разным участкам и изображают результаты многолетних наблюдений, каждое из которых производится в два последовательных года. Можно спросить себя, содержат ли полученные данные какую-либо
Но в ряде важных случаев все эти факторы оказываются не очень существенными, а главное значение имеет численность исходной популяции К. В таких случаях "облако" рис.2 принимает "вытянутую" форму, изображенную на рис.3а. Сужение облака означает, что (предполагая наблюдения достаточно полными) при данном значении К популяция в следующем году всегда оказывается лишь в узких пределах (M1, M2).
Рис.3a и 3б
Если "облако" достаточно узко, то его можно приближенно заменить кривой (рис.3б), воспроизводящей его форму и играющей роль приближенного фазового портрета популяции. Конечно, при этом мы "огрубляем" наше описание размножения популяции, не учитывая колебаний М в зависимости от природных условий и погоды и оставляя лишь зависимость М от К, т.е. от численности исходной популяции: в самом деле, на рис.3б при заданном К соответствующее значение определяется точкой пересечения кривой с вертикалью, на которой абсцисса равна К, и больше ни от чего не зависит. Такая зависимость между величинами, при которой значение первой величины (аргумента) полностью определяет значение второй (функции), называется функциональной зависимостью. Рис.3б изображает зависимость М от К; здесь К – аргумент, М – функция, а кривая на рисунке – график этой функции. Читатель может найти по этому графику несколько значений М, произвольно задавая значения К.
Конечно, процедура перехода от "узкого облака" на рис.3а к графику рис.3б очень типична и встречается во всех случаях, когда функциональные зависимости получаются из опыта (или, как говорят, являются "эмпирическими" зависимостями). В действительности облако может быть значительно уже, чем на рис.3а, и приближение 3б оказывается значительно точнее. Мы будем считать, что в нашей задаче о размножении насекомых (и в ряде других задач, рассматриваемых дальше) такое приближение законно. Естественно, это предположение должно быть подтверждено опытом, и в целом ряде вопросов оно в самом деле хорошо подтверждается. Итак, в качестве фазовых портретов мы будем чаще всего рассматривать кривые – графики функций.
В простейших случаях, изучаемых в курсе средней школы, функции могут быть выражены в виде формул, позволяющих по заданному значению аргумента вычислить соответствующее ему значение функции (например, в наших обозначениях: М = К2, М = (К+1)3, М = lg К). Такие формулы получаются обычно из математики или из физических теорий, описывающих достаточно простые явления природы. В экологии и родственных ей областях (например, в экономике и социологии) ситуации более сложны, и описание их с помощью формул удается редко. Как правило, в таких вопросах приходится довольствоваться "эмпирическими" зависимостями вроде кривой 3б. Нам надо научиться исследовать такие эмпирические зависимости.
На рис.4 изображен ряд точек Р1, Р2, ... , полученных путем многолетних "стандартных наблюдений" и "укладывающихся" на эмпирическую кривую, которую мы проводим через них и считаем фазовым портретом изучаемого явления. Для точки Р1 имеем К1 = 3000, М1 = 5300.
Рис.4
Ясно, что "облако" рис.2 невозможно уложить на одну кривую, так что в этом случае излагаемые далее методы неприменимы. "Облако" рис.3а плохо изображается кривой 3б; дальше предполагается, что наблюдения дают значительно более узкое "облако", практически совпадающее с такой кривой, что и происходит в ряде случаев.
На рис.5 изображено несколько графиков, "общий вид" которых позволяет делать заключения о ходе соответствующего процесса. Поясним, что означает здесь выражение "общий вид кривой". Кривая 1 поднимается снизу вверх, так что большему значению К соответствует на ней большее значение М; такая функция М от К (в записи: М = М(К)) называется возрастающей. Кривая 2 опускается, так что при увеличении К ордината точки этой кривой М убывает; такая функция называется убывающей. Кривая 3 изображает функцию, которая сначала убывает, а затем, пройдя через наименьшее значение (минимум), возрастает. (Постройте график функции, имеющей наибольшее значение – максимум).
Рис.5