Перейдем теперь к важному, часто встречающемуся в природе случаю, когда фазовая кривая пересекает биссектрису координатного угла в трех точках 1, 2, 3 (не считая начала координат О). Это значит, что есть три стационарных численности популяции, кроме нулевой, соответствующей вымиранию вида. На рис.12 изображен наиболее обычный случай, когда фазовый портрет изображает возрастающую функцию М(К), то есть когда большему исходному значению К соответствует и большее значение М в следующем году.
Рис.12
Биологический смысл этой зависимости мы выясним позже, а теперь попробуем формально применить к кривой рис.12 прием отражения в биссектрисе.
Мы можем воспользоваться тем, что уже знаем об участках кривой выше и ниже биссектрисы. Начальные состояния между точками 0 и 1 будут двигаться вправо, приближаясь к точке 1, а начальные состояния между точками 1 и 2 – влево, тоже приближаясь к точке 1. Таким образом, точка 1 будет по-прежнему точкой устойчивого равновесия, но теперь с одной оговоркой: слишком сильное нарушение равновесия в сторону возрастания популяции уже не приведет к возвращению в точку 1, поскольку состояния между точками 2 и 3, тоже принадлежащие дуге над биссектрисой, будут двигаться вправо, как и точки дуги 0-1. Таким образом, точка 2 изображает неустойчивое равновесие, как на рис.9. Напротив, точка 3, как и точка 1, изображает устойчивое равновесие, но с большей численностью популяции, чем точка 1. Здесь опять надо иметь в виду, что устойчивость популяции – понятие "локальное", так что слишком большие отклонения от равновесия уже не восстанавливаются.
Рекомендуем читателю провести геометрические построения, подобные изображенным на рисунках 8, 9, на более сложном рис.12, для участков 0-1, 1-2, 2-3 и правее точки 3.
Участок графика 0-1 можно считать благоприятным для жизни вида, поскольку любая популяция, находящаяся на этом участке, будет расти до состояния устойчивого равновесия 1, а затем останется в этом состоянии (практически – с небольшими колебаниями около него, от разных случайных причин). Участок 1-2 неблагоприятен, на нем численность популяции убывает, но не до нуля, а до устойчивого равновесия 1. Участок 2-3 опять благоприятен и приводит к устойчивому равновесию 3. За точкой 3 может больше не быть точек пересечения с биссектрисой, и тогда все состояния справа от 3 приближаются к состоянию 3, с уменьшением популяции; или же существуют дальнейшие точки пересечения, которые будут по очереди точками неустойчивого и устойчивого равновесия. В случае насекомых, насколько нам известно, более трех точек равновесия (за исключением нулевой) в природе не встречается.
Естественно, возникает вопрос, от каких биологических причин зависит форма кривой, называемой "фазовым портретом" популяции. В случае насекомых вроде упомянутого выше черного усача эти причины известны. Кривые вида, изображенного на рис.8, соответствуют образу жизни насекомого в молодых лесах, или – в горной местности – в лесах, расположенных на нижней части склонов, близ границы со степью. В таких лесах усач нападает на слабые и больные деревья, забираясь в луб и откладывая там яйца. Сильных деревьев он не трогает, потому что они защищаются, заливая яйца смолой. Равновесие 1 рисунка 8 означает устойчивую популяцию насекомых в лесу с постоянной долей ослабленных деревьев, служащих им пищей и местом размножения.