Читаем Посвящение в радиоэлектронику полностью

Звук падения одной капли дождя — это слабый и очень короткий щелчок. Он содержит колебания всех возможных звуковых частот — от самых низких до самых высоких. Шум дождя вы, разумеется, слышали и прекрасно себе представляете. Он складывается из отдельных звуков падения множества капель. Спектр шума дождя равномерен — его интенсивность одинакова на всех звуковых частотах. В электронике есть отличный аналог шума дождя — дробовой шум радиоламп и полупроводниковых приборов. Пролет каждого элементарного носителя электрического заряда, электрона или иона, создает в цени короткий импульс тока. А сумма множества таких импульсов образует электрический дробовой шум, очень похожий на шум дождя, если его воспроизвести через громкоговоритель. Собственно, само название «дробовой шум» произошло от звука дроби, ссыпаемой в какой-либо сосуд.

Прямоугольное колебание и его спектр.

Не напомнило ли вам что-нибудь это очень знакомое слово «спектр»? Спектр солнечного света, спектр радуги, спектр, полученный на экране с помощью стеклянной призмы… Что здесь общего со спектром электрических колебаний? Очень много. Разложение колебаний в спектр есть разложение на элементарные, синусоидальные колебания. Свет — это электромагнитная волна, распространяющееся электромагнитное колебание. А белый свет — это сумма бесконечного множества колебаний с различными частотами. Вот почему радисты называют шум с равномерным спектром белым.

Частоты световых колебаний можно найти, воспользовавшись связью между частотой и длиной волны: f = с/λ, где с — скорость света в вакууме, равная 3-108 м/с, или 300000 км/с. Известно, что человеческий глаз реагирует на электромагнитные волны с длинами от 0,7 мкм (красный свет) до 0,4 мкм (синий свет). Частоты границ видимого диапазона составляют соответственно 4·1014 и 7,5·1014 Гц, т. е. 400 000 и 750 000 ГГц. Обратите внимание, насколько это больше частоты тока в электрической сети (50 Гц)! Оптики ввели понятие «монохроматическое колебание». Моно — значит единственный, хромос — цвет. Монохроматическое колебание имеет только одну, строго определенную частоту. Монохроматическая волна оптического диапазона воспринимается как густой, насыщенный цвет. Если вы когда-нибудь видели свет гелиево-неонового лазера (тонкий красный луч), обратили ли вы внимание на полную насыщенность цвета? Длина волны Не-Nе-лазера составляет 0,63 мкм, и его свет воспринимается как красный или красно-оранжевый. Других длин волн в излучении этого лазера нет. Если же электромагнитная волна имеет другую длину, она и воспринимается человеческим глазом как излучение другого цвета. Зеленый цвет соответствует длинам волн около 0,5 мкм, синий — 0,4 мкм.

Мы узнали, что спектр синусоидального колебания самый простой: он состоит всего из одной спектральной линии на «своей» частоте f0. Вот почему несущие колебания радиовещательных станций строго синусоидальны. Нельзя же допустить, чтобы одна и та же станция принималась одновременно на нескольких частотах! После такого заключения некоторые из наиболее любознательных читателей могут прийти к полному недоумению: при передаче сигналов по радио надо применять синусоидальное несущее колебание, которое никакой информации не несет! Но информация-то все-таки передается! Никакого противоречия здесь, разумеется, нет. Прежде всего надо заметить, что исходный сигнал, несущий информацию (телеграфный, речевой или музыкальный), занимает некоторый спектр частот. Мы уже говорили о его ширине, а теперь изобразим сигнал и спектр графически. Обратите внимание, что спектр теперь уже не линейчатый, а сплошной. Линейчатым спектром обладают только периодические процессы, регулярно повторяющиеся во времени. А передача информации — процесс случайный, вероятностный. В зависимости от текста телеграммы могут передаваться различные сочетания точек и тире. И им будут соответствовать различные спектры.

Импульсы и их спектры.

Но общей для них будет занимаемая полоса частот, указанная на графиках. Ширина ее обозначена буквой В. Наложим передаваемый сигнал на синусоидальную несущую. Излучаемый в эфир или передаваемый по линии модулированный сигнал уже не будет чисто синусоидальным: его амплитуда будет изменяться в такт с передаваемым сообщением. Спектр излучаемого сигнала станет таким, как показано на рисунке. Кроме спектральной линии на частоте f0 — несущей — появятся боковые полосы. Это два зеркально-симметричных спектра по обе стороны от несущей. Форма их при амплитудной модуляции точно повторяет форму спектра исходного сигнала.

Спектр белого света.

Сигналы и их спектры.

Перейти на страницу:

Все книги серии Массовая радиобиблиотека

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука