Эти транзисторы имеют очень высокое входное сопротивление между затвором и двумя другими выводами. Когда такие транзисторы используются для построения логических схем с помощью комбинирования дополнительных пар транзисторов, результирующие логические схемы называют комплементарными металл-оксид-полупроводниковыми CMOS (КМОП).
В 1970–1980 годах схемы КМОП считались приборами с низким потреблением и недостаточным быстродействием. Однако технология улучшилась до такой степени, что КМОП-логика стала не менее быстродействующей, чем большинство серий ТТЛ при значительной экономии мощности. Поэтому большинство новых логических приборов выполняются именно на основе схем КМОП.
Благодаря высокому входному сопротивлению затворов вход схем КМОП почти не потребляет ток от предыдущей схемы. Термин комплементарный означает, что в каждом приборе КМОП два типа транзисторов — полевые МОП-транзисторы
Первые переключаются (при этом происходит замыкание стока на исток) при подаче положительного напряжения на затвор. Транзисторы
Рис. 7.19.
Полевые КМОП-транзисторы, имеют большее по сравнению с биполярными транзисторами сопротивление сток-исток во включенном состоянии в десятки и даже сотни Ом.
Если через полевые КМОП-транзисторы течет слишком большой ток, выходное напряжение рискует превысить допустимый уровень, тогда рассеиваемая мощность разрушит транзистор. Если через выход течет слишком малый ток, напряжение на выходе будет очень близким к величине Vdd или Vss. Характеристики и методы тестирования таких транзисторов описаны в
Первым семейством приборов КМОП, которые получили широкое распространение, были ИМС общего назначения серии 4000. Несколько изготовителей выпускают схемы с такими номерами. Некоторые компоненты выпускает фирма Motorola, но ее номера деталей начинаются на 1, поэтому микросхема из 4 двухвходовых схем И-НЕ 4011 будет обозначаться 14011.
Эти микросхемы имеют преимущество, заключающееся в широком диапазоне напряжений питания в пределах от 3 до 18 В. Логический уровень ВЫСОКИЙ опознается схемой КМОП при любой величине, большей 2/3 Vdd.
НИЗКИМ уровнем считается сигнал со значением менее 1/3 Vdd. Обратите внимание, что если на Vdd подается напряжение питания 5 В, а V — земля, то допустимыми входными сигналами будут 0–1,7 В для уровня НИЗКИЙ и 3,33-5,0 В для уровня ВЫСОКИЙ. Эти определения логических уровней не полностью совместимы с выходными сигналами ТТЛ, поэтому для правильного их различения при совместном использования ТТЛ и КМОП приборов необходимо дополнительное оборудование.
Если схема КМОП должна запускаться выходными сигналами ТТЛ, то обычно принимаются определенные меры предосторожности. Главная проблема заключается в том. что ТТЛ гарантирует только, что ее выход 2.4 В соответствует логическому уровню ВЫСОКИЙ. Вход КМОП требует по меньшей мере 3,3 В для того, чтобы воспринять поступающий сигнал как высокий. Чтобы получить с ТТЛ большее напряжение для логического уровня высокий, часто на выход схемы устанавливается повышающий резистор, как показано на рис. 7.20.
Рис. 7.20.
Если ТТЛ подключается с КМОП, работающей от источника питания более 5 В, то для передачи логических уровней необходимы более сложные схемы.
Популярность ИМС ТТЛ и преимущества низкого энергопотребления КМОП были совмещены в серии 74С КМОП. Эти детали идентичны с точки зрения соответствия выводов деталям ТТЛ с тем же номером. Однако их внутренняя схема использует КМОП и имеет входные и выходные спецификации КМОП. Они также работают медленнее, чем приборы ТТЛ.
Серия 74НС предоставляет более быстродействующие детали КМОП, которые конкурируют со стандартными ТТЛ по скорости, но в то же время имеют характеристики КМОП. Эти детали можно считать имеющими интерфейс непосредственно с ТТЛ, поскольку у них иное определение уровня логических сигналов и другие характеристики выходных токов. Серия 74НСТ содержит устройства, заменяющие ТТ. Они изготовлены с помощью технологии КМОП, но обеспечивают логику, совместимую с ТТЛ по входам и выходам. Рассеиваемая мощность 74НСТ не так мала, как у 74НС, но значительно выше, чем у приборов на основе стандартной ТТЛ технологии (табл. 7.1).
ЭСЛ
Эмиттерно-связанная логика (ЭСЛ) — это еще одно семейство логических ИМС, которые реализуют совершенно другой подход. ТТЛ и КМОП-транзисторы используются таким образом, что достигают полного насыщения или находятся в состоянии полной отсечки.