Сервисное обслуживание цифровых схем обычно считается наиболее простым. Это особенно справедливо для систем, которые надежно работали, а затем в них возникала неисправность, в отличие от новых конструкций, которые требуют отладки при доводке.
Чтобы приведенное правило было справедливо, необходимо соблюдать следующие условия:
♦ понимание работы схемы;
♦ понимание природы возможных неисправностей;
♦ понимание возможных причин неисправностей;
♦ способность читать схемы;
♦ систематический подход к локализации проблем.
В транзисторах обычно возникают неисправности двух типов: короткое замыкание и обрыв. Цифровые схемы состоят, в основном, из транзисторов и поэтому именно они нередко становятся источниками неполадок. Важно понимать влияние короткого замыкания и обрыва на работу конкретной детали и компонентов, с которыми она соединена. Тестирование транзисторов рассматривалось в
Обрыв
Обрыв означает, что предполагаемый контур протекания тока был каким-либо образом нарушен. Если лампа не работает до тех пор, пока вы не пошевелите провода возле вилки, это свидетельствует о разрыве проводов или обрыве в схеме. Такой же тип неполадки может случиться в цифровой ИМС. Слишком сильный ток мог разрушить кремний, из которого сделан транзистор.
Транзистор вышел из строя, значит он больше не будет включаться. Симптомы этой неполадки напоминают обрыв в схеме. Плохое крепление кристаллодержателя, который ведет к кристаллической пластине, также может привести к обрыву. В любом случае, такая поломка означает, что ток не может больше протекать правильно.
Обрыв в схеме может произойти на входе и на выходе. В результате вход и выход предыдущего устройства электрически разъединены. В зависимости от типа микросхемы она в этом случае будет вести себя по-разному. Посмотрев на схему ТТЛ, вы увидите, что схема с обрывом на входе будет работать, как при приходе логической 1. Следовательно, выход ТТЛ открыт, входы всех схем ТТЛ, подключенных к этому выходу, будут воспринимать всегда логический уровень ВЫСОКИЙ.
Входной сигнал схемы КМОП поступает на затвор полевого КМОП-транзистора. Вход этих микросхем с высоким импедансом может изначально не воспринимать напряжения при обрыве, и считать его логическим уровнем НИЗКИЙ. Через некоторое время, однако, входные токи шумов могут сложиться с входным сигналом и образовать заряд, подобно тому; как это происходит в транзисторе. После накопления достаточного заряда логическая схема может воспринять его как логический уровень ВЫСОКИЙ на входе.
Другая возможность заключается в том, что напряжение на выходе с обрывом будет очень близко к абсолютной границе между высоким и низким логическими уровнями, что вызовет постоянные высокочастотные колебания на выходе прибора. Высокочастотные колебания в цифровой схеме приведут в возрастанию потребления тока, заставляя се нагреваться. В то же время схемы с обрывом на входе не реагируют на поступающие на них сигналы.
Обрывы на входах и выходах микросхем происходят внутри, но могут быть вызваны и плохими соединениями выводов ИМС с контактами панельки, холодной пайкой, трещинами печатной платы, согнутыми выводами ИМС. Для того чтобы отличить эти проблемы от неисправностей внутри микросхемы, сравните логические сигналы выводов микросхемы с подозрением на неисправность с сигналами выводов правильно соединенной микросхемы.
Короткое замыкание
Короткое замыкание — это тот козел отпущения, которого чаще всего обвиняют во всех электрических проблемах.
Создается впечатление, что в 99 % случаев, когда люди дают отчет о проблеме, возникшей в электронном оборудовании, они вынуждены давать авторитетный диагноз: «Это было короткое замыкание». В действительности это явление возникает относительно редко и в большинстве устройств его легко обнаружить. Настоящее короткое замыкание в силовой цепи сопровождается такими признаками, как сгоревшие предохранители, клубы дыма, тлеющие угольки, отчетливый запах горелого кремния.