Другие применения требовали меньшего рассеивания энергии, но не нуждались в высоком быстродействии. Так появилась серия 74L (с низким потреблением энергии). Были разработаны транзисторы Шоттки, недостигающего глубокого насыщения в открытом состоянии, вследствие чего могли выключаться быстрее, чем обычные биполярные транзисторы, что привело к созданию серии 74S. Комбинация технологии с низким потреблением и транзисторами Шоттки дало серию 74LS.
Спустя годы были разработаны способы изготовления транзисторов, которые быстрее переключаются и имеют меньшее энергопотребление. Новые технологии породили усовершенствованные схемы Шоттки 74 AS, модернизированные схемы Шоттки с низким потреблением ALS, высокоскоростную 74F серии семейства ТТЛ. Эти приборы использовались в случаях, где было необходимо высокое быстродействие.
Во всем семействе ТТЛ прибор с одинаковым номером детали совместимым с любым другим прибором семейства, вывод соответствовал выводу. 74LS00 также представляет собой четыре двухвходовых схемы И-НЕ, как и 74ALS00, 74S00 и т. д. У разных серий может отличаться только быстродействие, требования к энергопотреблению и спецификации входных и выходных токов.
Когда возникает подозрение, что деталь неисправна, обычно она просто заменяется другой, а специалист выясняет, устранит ли это проблему. Достаточно часто в схеме используются детали разных серий. Предположим, например, что возникла неисправность микросхемы 7408, но у вас на складе есть только 74LS08.
Если замена стандартной микросхемы ТТЛ 7408 на 74LS08 решает проблему, то, вероятно, 7408 неисправна.
Более того, если замена на микросхему 74LS не решает проблемы или появляются другие симптомы, это не обязательно означает, что 7408 исправна, и очень вероятно, что ваша новая деталь была подвергнута воздействию, выходящему за пределы рабочего диапазона.
Другой характеристикой всех устройств ТТЛ является напряжение источника питания. Каждая микросхема имеет вывод, помеченный Vcc (напряжение питания для коллекторов). Номинальная величина Vcc для схем ТТЛ
На рис. 7.12 показаны характеристики ТТЛ фирмы Texas Instruments.
Рис. 7.12.
Первая часть спецификации показывает абсолютные максимальные значения для входов прибора. Вторая — характеристики напряжения и тока на входе и выходе. Последняя часть демонстрирует характеристики переключения прибора.
Уровень логической 1 в схемах с ТТЛ считается равным 5 В, а логический 0 — равным 0 В. Спецификация показывает реальные пределы этих уровней. Например, Voh может иметь любое значение выше 2,4 В. Это означает, что если выход не перегружен, то гарантируется высокий уровень выходного сигнала больше 2,4 В. Параметр Vih показывает, что любое напряжение, поданное на вход этой схемы, большее 2,0 В, будет рассматриваться как высокий логический уровень. На рис. 7.13 показаны определения уровней для схем с ТТЛ. Если в схеме ТТЛ какие-либо измерения показывают 0.4–2.4 В, судя по всему, имеет место неисправность.
Рис. 7.13.
Спецификации по входному току (Iih и Iil) показывают величины втекающего и вытекающего токов в зависимости от того, какая логика используется (положительная или отрицательная). Эта информация помогает определить, может ли другой прибор вызвать срабатывание данной схемы. Спецификации выходного тока (Ioh или Iol) показывают, какова должна быть максимальная нагрузка. Например, Iohmax 400 мкА означает, что прибор не должен иметь ток нагрузки более 400 мкА.
Распространенной ошибкой при поиске неисправностей экспериментальных схем является использование светодиода для определения логического уровня выхода. Светодиод на рис. 7.14 (который будет потреблять ток 5-10 мА) перегружает выход схемы, к которой он подключен.
Рис. 7.14.
Он уменьшит выходное напряжения до уровня менее 2 В, что может быть не признано в качестве высокого уровня следующей микросхемой. Правильный способ проведения такого теста будет показан дальше в этой главе.
Для того чтобы принимать разумные решения при поиске неисправностей, важно также понимать устройство электрической схемы, которая помещена в корпус ИМС. Большинство приборов ТТЛ имеют одинаковую базовую выходную схему. На рис. 7.15 показана схема, которая называется выходным двухтранзисторным каскодом.
Рис. 7.15.